
A Formal Environment Model for Multi-Agent

Systems

Paulo Salem da Silva and Ana C. V. de Melo

University of São Paulo
Department of Computer Science

São Paulo � Brazil
salem@ime.usp.br acvm@ime.usp.br

Abstract. Multi-agent systems are employed to model complex systems
which can be decomposed into several interacting pieces called agents. In
such systems, agents exist, evolve and interact within an environment.
In this paper we present a model for the speci�cation of such environ-
ments. This Environment Model for Multi-Agent Systems (EMMAS), as
we call it, de�nes both structural and dynamic aspects of environments.
Structurally, EMMAS connects agents by a social network, in which the
link between agents is speci�ed as the capability that one agent has to
act upon another. Dynamically, EMMAS provides operations that can
be composed together in order to create a number of di�erent environ-
mental situations and to respond appropriately to agents' actions. These
features are founded on a mathematical model that we provide and that
de�nes rigorously what constitutes an environment. Formality is achieved
by employing the π-calculus process algebra in order to give the seman-
tics of this model. This allows, in particular, a simple characterization
of the evolution of the environment structure. Moreover, owing to this
formal semantics, it is possible to perform formal analyses on environ-
ments thus described. For the sake of illustration, a concrete example of
environment speci�cation using EMMAS is also given.

1 Introduction

Multi-agent systems (MAS) [13] can be used to model complex systems in which
the entities to be studied can be decomposed into several interacting pieces called
agents. Human societies, computer networks, neural tissue and cell biology are
examples of systems that can be seen from this perspective. Given a MAS,
one technique often employed to study it is simulation [2]. That is, one may
implement the several agents of interest, compose them into a MAS, and then
run simulations in order to analyse their dynamic behavior. In such works, the
analysis method of choice is usually the collection or optimization of statistics
over several runs (e.g., the mean value of a numeric variable over time). Examples
of this approach include platforms such as Swarm [5], MASON [3] and Repast
[6]. There are, however, other possibilities for analysing such simulations. The
crucial insight here is that simulations can be seen as incomplete explorations of
state-spaces, and thus can be subject to some kinds of formal analyses.



A MAS can be decomposed into two aspects. The �rst relates to the agents.
The second deals with how such agents come together and interact among them-
selves. The elements that form this second aspect constitute the environment1

of a MAS.

That said, our overall work is concerned with how one can build a MAS to
model a complex situation suitable for both exploratory simulation and approx-
imate formal veri�cation. To achieve this, we aim at providing three basic ele-
ments: (i) an agent model, which we have already described in [10]; (ii) a formal
speci�cation of the environment of these agents, so that they can be composed
into a MAS; and (iii) techniques to formally analyse the resulting MAS.

In this paper we focus on the problem of de�ning environments. Our envi-
ronments have a social network structure in which nodes are agents, and the
links between them are de�ned by the capabilities that agents have to act upon
each other. Furthermore, environments are more than a network structure, as
they may change dynamically, either spontaneously or as a reaction to an agent's
actions. These design choices arise from the agent model that we consider [10].
In it, agents are described from the point of view of behavioral psychology [11],
which suggests a number of desirable features from an environment that brings
them together. For instance, great importance is placed on the possibility of
performing experiments of di�erent kinds, and of responding to agent's actions
in appropriate ways. As we shall see, our approach achieves this by the envi-
ronment behaviors it de�nes. Furthermore, interaction is mostly interestingly
treated by abstracting physical properties away and dealing only with relation-
ships, which we do by adopting a social network structure and operations to
modify it. We believe that these characteristics already di�erentiate our work
substantially from other existing environment description methods (see Weyns
et al. [14] for a survey).

Here we develop a simple formal framework in which to de�ne such environ-
ments so that they can be subject to automated analyses procedures. A mathe-
matical model is provided, which we call the Environment Model for Multi-Agent
Systems (EMMAS), and its semantics is given in terms of the π-calculus process
algebra [4,7].

Process algebras are typically employed to describe concurrent systems. They
are good at succinctly describing behaviors relevant for inter-process communica-
tion. Our particular choice of π-calculus as a theoretical foundation is motivated
by a number of its distinguishing features among existing such algebras. First, it
takes communication through channels as a primitive notion, which makes it a
natural choice for representing networks. Second, it allows for dynamic modi�-
cation, which makes the creation and destruction of connections between agents
possible. Third, it provides a convenient representation for broadcast behavior

1 Notice that the term �environment� is not used consistently in the MAS literature
[14]. Sometimes, it is used to mean the conceptual entity in which the agents and
other objects exist and that allows them to interact; sometimes, it is used to mean
the computational infrastructure that supports the MAS (e.g., a simulator). We use
the term in the former sense.



through its replication operator. Finally, it has few operators and a simple op-
erational semantics, which is attractive for implementation.

It is worth to note that despite all of these qualities of process algebras in
general, and of π-calculus in particular, they are not usually employed in the
context of multi-agent systems simulation. One exception is the work of Wang
and Wysk [12], which uses a modi�ed π-calculus to express a certain class of
agents and their environments. But their approach is not su�cient to deal with
our problems, and thus we develop our own method.

We purposefully treat agents as black-boxes here. This does not mean that
they have no known internal structure; it merely means that such structure is
mostly irrelevant as far as their environment is concerned. We assume, thus, that
those two aspects of a MAS are complementary, but separate, issues. However,
there must be a way to interface the agents with their environment. This is
achieved through the assumption that agents receive stimuli as input and that
they output actions.

The text is organized as follows. Section 2 introduces the basic features of the
model, and also provides their semantics. Section 3, in turn, de�nes a number of
convenience elements, which are not fundamental, but form a valuable speci�ca-
tion repertoire. The reader is supposed to be familiar with the π-calculus process
algebra, though the presented speci�cations are straightforward and should per-
haps be accessible to anyone with some knowledge of process algebras. Section 4
presents a concrete example of an EMMAS speci�cation. At last, Sect. 5 summa-
rizes the main points presented and considers the new perspectives that EMMAS
brings. The present text is based on and an evolution of a longer technical report
[9], which the reader might wish to consult as well.

For the sake of readability, we have omitted π-calculus input and output
parameters when such parameters are not relevant (e.g., we write a instead of
a(x) if x is not used later).

2 Environment Model

Our Environment Model for Multi-Agent Systems (EMMAS) is a mathematical
framework that can be used to specify environments for multi-agent systems. Its
translation to the π-calculus process algebra is achieved using a translation func-
tion to map constructs of EMMAS into π-calculus expressions (i.e., a construct
C is translated to [C]π). The full de�nition of such a function will be given as
new constructs are introduced, and for the moment the following su�ces.

De�nition 1 (Translation function). The translation function [ ]π maps
constructs of EMMAS into π-calculus expressions.

2.1 Underlying Elementary π-Calculus Events

A π-calculus speci�cation can be divided into two parts. First, and most funda-
mentally, it is necessary to specify the set of events that are particular to that



speci�cation. Second, it is necessary to specify processes built using those events.
In this section we account for this �rst part.

Input and output events are all made from basic names. Hence, we �rst
formally de�ne a set of names in order to have the corresponding events. The
de�nition below de�ne such names, and Table 1 explains the events that arise.

De�nition 2 (Environment Names). The environment names are de�ned
by the following set:

ENames = {emitna , stopna , beginningns , stablens , absentns ,
destroys,ma,n , ccn, done|
a ∈ Actions, s ∈ Stimuli,m, n ∈ AgentIDs}

Moreover, the set of environment events that immediately follow from ENames
is called EEvents.

Notice that names are primitive entities, even though they are denoted here
with subscripts and superscripts, which could suggest some sort of parametriza-
tion. This writing style is merely for readability's sake.

Table 1. Informal description of events, divided in three categories according to their
origin and destination. The corresponding output or input events not shown merely
allow the ones described to work properly.

Event Informal description

Agent to environment

emitna Agent identi�ed by n performs action a.

stopna Agent identi�ed by n stops performing action a.

Environment to agent

beginningns Delivery of stimulus s to the agent identi�ed by n is beginning.

stablens Delivery of stimulus s to the agent identi�ed by n is stable.

endingns Delivery of stimulus s to the agent identi�ed by n is ending.

absentns Delivery of stimulus s to the agent identi�ed by n becomes
absent.

Environment to environment

destroys,ma,n Requests the destruction of an action transformer that converts
action a from agent identi�ed by n into stimulus s accepted by
the agent identi�ed by m.

ccn Requests the creation of a new action transformer.

done Signals that an operation has terminated.

2.2 Operations

In order to exhibit dynamic behavior, the environment depends on operations
to modify its structures.



De�nition 3 (Operation). An operation is any π-calculus expression such
that:

� its names belong to the set ENames;
� it signals its termination with the done event.

The second condition is particularly important because it will allow the se-
quential composition of operations, as we shall see in Sect. 3.1.

Of course such an abstract de�nition of operations cannot be used directly.
Nevertheless, it su�ces to de�ne the basic model for environments. Concrete
operations shall be given in Sect. 3.2.

2.3 Environment Structures

The environment is the central structure of EMMAS speci�cations. It de�nes
which agents are present, how they are initially connected, and what dynamic
behaviors exist in the environment itself. The presentation below follows a top-
down approach. We begin by de�ning the overall environment, and then proceed
to examine the nature of its constituent parts.

De�nition 4 (Environment). An environment is a tuple 〈AG,AT,EB〉 such
that:

� AG = {ag1 . . . agl} is a set of agent pro�les;
� AT = {t1 . . . tm} is a set of action transformers;
� EB = {eb1 . . . ebn} is a set of operations (Def. 3), which are called here

environment behaviors.

Moreover, let ENames = {en1, . . . , eno}. Then the corresponding π-calculus
expression for the environment is de�ned as:

[〈AG,AT,EB〉]π = (ν en1, . . . , eno)
([ag1]π|[ag2]π| . . . |[agl]π|
[t1]π|[t2]π| . . . |[tm]π|
[eb1]π|[eb2]π| . . . |[ebn]π|
!NewAT )

where

NewAT = ccn〈emit, stop, absent, beginning, stable, ending, destroy〉.
T (emit, stop, absent, beginning, stable, ending, destroy)

and T is given in Def. 6.

This de�nition merits a few comments. First, all elements are put in parallel
composition, which allows them to interact. Notice that all names from ENames
are restricted to the environment, which ensures that events are always used
in such an interaction (i.e., events cannot be sent to outside the environment



process, and therefore can only be used internally). Second, the set of action
transformers provide the network structure that connects the agents, as we shall
shortly see. Third, the environment behaviors, as the name implies, speci�es
behaviors that belong to the environment itself. This is useful to model reactions
to agents' actions, as well as to capture ways in which the environment may
evolve. This is achieved through operations provided by the speci�er. Finally, the
component NewAT allows the creation of new action transformers. In order to
do so, it receives a message ccn (�create connection�), whose parameters initialize
the rest of the expression. We shall see an operation that does this in Sect. 3.2.

Environments exist in order to allow agents to interact. As we remarked
earlier, the internal structure of these agents, as complex as it may be, is mostly
irrelevant for their interaction model. Thus, we have abstracted it away as much
as possible. What is left are the interfaces that allow agents to interact with each
other and with the environment itself, which we call agent pro�les. Hence, we
have the following de�nition.

De�nition 5 (Agent Pro�le). An agent pro�le is a triple 〈n, S,A〉 such that:

� n ∈ AgentIDs is a unique identi�er for the agent;
� A = {a1 . . . ai} ⊆ Actions is a set of actions;
� S = {s1 . . . sj} ⊆ Stimuli is a set of stimuli.

Moreover,

[〈n, S,A〉]π = ([Act(a1, n)]π|[Act(a2, n)]π| . . . |[Act(ai, n)]π)|
([Stim(s1, n)]π|[Stim(s2, n)]π| . . . |[Stim(sj , n)]π)

such that, for all a ∈ A and s ∈ S, we have:

[Act(a, n)]π =!(emitna .stop
n
a)

[Stim(s, n)]π = piStim(beginningns , stable
n
s , ending

n
s , absent

n
s )

where

piStim(beginning, stable, ending, absent) =
beginning.stable.ending.absent.piStim(beginning, stable, ending, absent)

In this de�nition, it is clear that agents have several components, each re-
sponsible for controlling one particular action or stimulus. Act(a, n) de�nes that
the agent identi�ed by n can start emitting an action a and can then stop such
emission. The replication operator ensures that this sequence can be carried out
an unbounded number of times. Stim(s, n), in turn, de�nes that the agent iden-
ti�ed by n can be stimulated by s, and that this stimulation follows four steps
(i.e., absent, beginning, stable and �nally ending). The recursive call ensures
that this stimulation sequence can start again as soon as it �nishes the last step.



These de�nitions re�ect the assumptions about the agent model we consider [10],
which, in particular, de�nes precise � internal � consequences for each of these
stimulation steps.

Agents interact by stimulating each other. But to have this capability, it is
�rst necessary to de�ne that an agent's action causes a stimulation in another
agent. This is done through action transformers, which speci�es that if agent
ag1 performs the action a, then agent ag2 should be stimulated with s.

De�nition 6 (Action Transformer). An action transformer is a tuple
〈ag1, a, s, ag2〉 such that:

� ag1 is an agent pro�le 〈n, S1, A1〉;
� ag2 is an agent pro�le 〈m,S2, A2〉;
� a is an action such that a ∈ A1;

� s is a stimulus such that s ∈ S2;

Moreover, the corresponding π-calculus expression for the action transformer
is de�ned as:

[〈ag1, a, s, ag2〉]π =
T (emitna , stop

n
a , absent

m
s , beginning

m
s , stable

m
s , ending

m
s , destroy

s,m
a,n )

where

T (emit, stop, absent, beginning, stable, ending, destroy) =

(

Normal behavior︷ ︸︸ ︷
emit.beginning.stable.stop.ending.absent .
T (emit, stop, absent, beginning, stable, ending, destroy))+

destroy︸ ︷︷ ︸
To disable the action transformer

The above de�nition can be divided in two parts. First, there is its normal
behavior, which merely de�nes the correct sequence through which an action is
transformed in a stimulus. Once such a sequence is completed, a recursive call to
the process de�nition restarts the action transformer. Second, there is the part
that allows the transformer to be destroyed. By performing destroy, the action
transformer disappears, since this event is not followed by anything. Figure 1
shows an example of environment in which the role of action transformers can
be appreciated.

We choose to have an intermediate structure such as the action transformer
between the agents instead of allowing a direct communication because an agent's
actions may have other e�ects besides stimulation. In particular, the environ-
ment can also respond to such actions in custom ways through the speci�ed
environment behaviors.



Fig. 1. An example of environment. Circles denote agent pro�les ag1, ag2 and
ag3. There are three action transformers: 〈ag1, a1, s1, ag2〉, 〈ag1, a1, s2, ag3〉 and
〈ag3, a2, s3, ag1〉. Moreover, there is also an environment behavior, behavior1, that is
executed whenever agent ag1 performs action a1. Notice that the same action a1, per-
formed by agent ag1, has three simultaneous consequences. Notice further that while
two of these consequences are stimulations, another merely triggers some operation.
This shows that it is technically interesting to have actions and stimuli as di�erent
entities, since they are not always related.

2.4 Semantics

The semantics of EMMAS is given by considering: (i) a syntactical transla-
tion of EMMAS into π-calculus expressions; and (ii) a mathematical foundation
which relates π-calculus events to the stimuli and actions of agents. The π-
calculus translation of (i), through its operational semantics, provides an over-
approximation of the desired behavior, which is then made precise using the
restrictions provided by (ii). By this method, we shall be able to build an LTS
that de�nes the possible states and transitions for any particular environment
speci�cation.

For the sake of clarity, we divide this section in two parts. First we de�ne
some preliminary structures required for building the transition system, which
is then presented.

Preliminary De�nitions Our model must have a way to e�ectively interact
with the agents of a MAS. Agents may trigger events that have a meaning in the
environment speci�cation (e.g., the performance of an action). Conversely, the
environment speci�cation may request the performance of an operation (e.g., to
stimulate an agent). It is necessary, therefore, to have a mathematical foundation
that formally de�nes how to accomplish this. We ful�ll this requirement by
providing both a vocabulary in which a few primitives are de�ned and a de�nition
for what constitutes an environment status with respect to these primitives.

De�nition 7 (Vocabulary). A vocabulary is a tuple

〈Stimuli, Actions,AgentIDs〉

such that:

� Stimuli is a �nite set of stimuli;
� Actions is a �nite set of actions;
� AgentIDs is a �nite set of agent identi�ers;



The sets Stimuli, Actions and AgentIDs de�ne, respectively, all available
stimuli, actions and agent identi�ers. These are sets containing primitive, un-
structured, elements.

De�nition 8 (Environment Status).
An environment status is a pair

〈Stimulation,Response〉
such that:

� Stimulation : AgentIDs×Stimuli→ {Beginning, Stable, Ending,Absent};
� Response : AgentIDs×Actions→ {Emitting,NotEmitting}.

Building the Transition System Given an environment E, we shall build
an annotated environment LTS by considering the LTS induced by [E]π, whose
states shall be annotated with our environment status (Def. 8), and whose struc-
ture shall be subject to some restrictions based on the possible values for an envi-
ronment status. Then we shall then have an LTS whose states have the following
form.

De�nition 9 (State). Let E be an environment and P be a π-calculus process
obtained by applying π-calculus operational semantics rules to [E]π. Moreover,
let 〈Stimulation,Response〉 be an environment status. Then a state is de�ned
as the following pair:

(P, 〈Stimulation,Response〉)

By this construction, at any point of the LTS we shall be able to know both
what is the current situation of the agents (because of the added environment
status) and what are the possible changes from that point (because of the π-
calculus operational semantics).

To proceed with this construction, we need a number of de�nitions. Let us
begin by providing a way to observe the internal transitions of an environment,
which is a fundamental capability that we need before proceeding. Recall from
Def. 4 that an environment's π-calculus process has a number of restrictions that
would prevent such observations (i.e., the transitions would be internal to the
process and not discernible in the LTS). It is, however, possible to characterize
these restrictions syntactically, and thus we may provide a simple method to
remove them when needed. This is accomplished by the following environment
unrestriction function unr.

De�nition 10 (Environment Unrestriction Function).
Let P and Q be π-calculus processes such that

P = (ν en1, . . . , eno)Q

where {en1, . . . , eno} = ENames. Then the environment unrestriction func-
tion is de�ned as unr(P ) = Q.



We may now de�ne the Stimulation function present in each state as follows.

De�nition 11 (Stimulation).
Let (P, 〈Stimulation,Response〉) be a state. Moreover, let → be the tran-

sition relation induced by the π-calculus operational semantics. Then, for all
s ∈ Stimuli and n ∈ AgentIDs, we have:

Stimulation(n, s) =


Absent if ∃P ′such that unr(P )

beginningns→ P ′

Beginning if ∃P ′such that unr(P )
stablens→ P ′

Stable if ∃P ′such that unr(P )
endingns→ P ′

Ending if ∃P ′such that unr(P )
absentns→ P ′

The Stimulation de�nition establishes the status of a particular stimulation
based on the order that stimulations must change (see Def. 5). For instance, if
a process is capable of receiving a beginningns event, it must be the case that
stimulus s is currently absent in agent identi�ed by n. The Stimulation function,
therefore, merely gives a way of reading the π-calculus LTS in order to have this
information explicitly for every agent and stimulus in any given process.

The Response function, on the other hand, is assumed as given (e.g., by a
simulator that implements the black-box behavior of the agents). Thus, we do
not de�ne it. However, it imposes some constraints on the LTS, which we must
specify and take in account. As we shall see shortly, these constraints turn the π-
calculus over-approximation into an exact description of the transition system's
structure that we wish to assign to EMMAS.

De�nition 12 (Transition constraints).
Let s1 = (P1, 〈Stimulation1, Response1〉) and

s2 = (P2, 〈Stimulation2, Response2〉) be states in an annotated environment
LTS 〈S,L, 〉. Moreover, let → be the transition relation induced by the π-

calculus operational semantics. Then the transition s1
l
 s2 is forbidden if one

of the cases hold:

� there exists a ∈ Actions and n ∈ AgentIDs such that:
• Response1(n, a) = Emitting;
• P2 was obtained by internally producing the event stopna in P1.

� there exists a ∈ Actions and n ∈ AgentIDs such that:
• Response1(n, a) = NotEmitting;
• P2 was obtained by internally producing the event emitna in P1.

� there exists a ∈ Actions and n ∈ AgentIDs such that:
• Response1(n, a) = Emitting;
• Response2(n, a) = NotEmitting;

• there exists a P ′ such that unr(P1)
emitna→ P ′.

� there exists a ∈ Actions and n ∈ AgentIDs such that:
• Response1(n, a) = NotEmitting;



• Response2(n, a) = Emitting;

• there exists a P ′ such that unr(P1)
stopna→ P ′.

At last, we may de�ne the annotated environment LTS as follows.

De�nition 13 (Annotated Environment LTS). Let E be an environment
(Def. 4), and let → be the transition relation induced by the π-calculus opera-
tional semantics. Then an annotated environment LTS is an LTS 〈S,L, 〉 such
that:

� L = EEvents (see Def. 2);
� S and  are constructed inductively as follows:
• Initial state. ([E]π, es) ∈ S, where es = 〈Stimulation,Response〉 such
that for all a ∈ Actions, s ∈ Stimuli, and n ∈ AgentIDs we have
Stimulation(n, s) = Absent and Response(n, a) = NotEmitting.

• Other states and transitions.
If s1 = (P1, 〈Stimulation1, Response1〉) ∈ S,
then s2 = (P2, 〈Stimulation2, Response2〉) ∈ S and s1

l
 s2 if and only

if:

∗ P1
l→ P2;

∗ Stimulation2 is de�ned w.r.t. P2 according to Def. 11;

∗ s1
l
 s2 is not forbidden by Def. 12.

3 Convenience Elements and Operations

So far we have de�ned the bare minimum for describing environments so that
they can be formally analysed. Clearly, though, more constructs are necessary
in order to make such speci�cations. For example, in Def. 3 we established what
is an operation in general, but we have not presented any particular one. In the
present section, then, we provide a number of convenience elements that can be
used to build concrete EMMAS models. These, however, are merely examples of
what can be expressed with the basic model given before, designed to show its
usefulness, and the reader may well imagine many other convenience elements.

3.1 Composition Operators

In order to build complex operations on top of the basic ones, it is useful to
de�ne composition operators. Some of these can be mapped directly to π-calculus
operators, but others require more sophistication.

De�nition 14 (Sequential Composition). Let Op1 and Op2 be operations.
Then their sequential composition is also an operation and is written as:

Op1;Op2

Moreover,

[Op1;Op2]π = (ν start)[Op1]π{start/done}|start.[Op2]π



The above translation aims at accounting for the intuition that Op1 must
take place before Op2. However, we cannot translate Op1;Op2 immediatly as
[Op1]π.[Op2]π, because in general π-calculus would not allow the resulting syn-
tax (e.g., (P +Q).R would not be a valid expression). Therefore, we adapt the
suggestion o�ered by Milner [4] (in Example 5.27), which requires every opera-
tion to signal its own termination with a done event.

De�nition 15 (Sequence). Let Op be an operation and n be an integer such
that n ≥ 1. Then a sequence of n compositions of Op is de�ned as:

Seq(Op, n) =

{
Op;Seq(Op, n− 1) n > 1
Op n = 1

De�nition 16 (Unbounded Sequence). Let Op an operation. Then an un-
bounded sequence of compositions of Op is de�ned as:

Forever(Op) = Op;Forever(Op)

The translation of these two kinds of sequences to π-calculus follows, of
course, from the translation of the sequential composition operator.

De�nition 17 (Choice). Let Op1 and Op2 be operations. Then their composi-
tion as a choice is also an operation and is written as:

Op1 +Op2

Moreover,

[Op1 +Op2]π = [Op1]π + [Op2]π

De�nition 18 (Parallel Composition). Let Op1, Op2, . . ., Opn be n opera-
tions. Then their parallel composition is also an operation and is written as:

Op1 ‖ Op2 ‖ . . . ‖ Opn
Moreover,

[Op1 ‖ Op2 ‖ . . . ‖ Opn]π = (ν start)[Op1]π{start/done}|[Op2]π{start/done}| . . . |
[Opn]π{start/done}| start.start. . . . .start︸ ︷︷ ︸

n times

.done

The translation for the parallel composition is not straightforward because
it is necessary to ensure that done is sent only once in the composed operation.
That is to say, the parallel composition of n operations2 is an operation itself,
and it only terminates when each of its components terminates.

2 We de�ne the operator for n operations instead of just two because this avoids the
problem of establishing its associativity properties.



3.2 Core Operations

We can now provide a core of operations upon which others can be built.

Agent Stimulation Operations The following operations are provided to
control the stimulation of agents.

De�nition 19 (Begin stimulation operation). Let ag = 〈n, S,A〉 be an
agent pro�le, and s ∈ S be a stimulus. Then the begin stimulation operation
is writen as:

BeginStimulation(s, ag)

Moreover,

[BeginStimulation(s, ag)]π = beginningns .stable
n
s .done

De�nition 20 (End stimulation operation). Let ag = 〈n, S,A〉 be an agent
pro�le, and s ∈ S be a stimulus. Then the end stimulation operation is writen
as:

EndStimulation(s, ag)

Moreover,

[EndStimulation(s, ag)]π = endingns .absent
n
s .done

De�nition 21 (Stimulate operation). Let ag = 〈n, S,A〉 be an agent pro�le,
and s ∈ S be a stimulus. Then the stimulate operation is de�ned as:

Stimulate(s, ag) = BeginStimulation(s, ag);EndStimulation(s, ag)

Action Transformers Operations The following operations are provided to
manipulate action transformers.

De�nition 22 (Create action transformer operation). Let ag1 = 〈n, S1, A1〉
be an agent pro�le, ag2 = 〈m,S2, A2〉 be another agent pro�le, a ∈ A1 be an ac-
tion, and s ∈ S2 be a stimulus. Then the create action transformer operation is
written as:

Create(ag1, a, s, ag2)

Moreover,

[Create(ag1, a, s, ag2)]π = ccn(emitna , stop
n
a , absent

m
s , beginning

m
s ,

stablems , ending
m
s , destroy

s,m
a,n ).done



In the above de�nition, notice that ccn is crafted to react with the component
NewAT given in Def. 4. Since operations will ultimately be put together with
parallel composition in the environment, it follows that the Create(ag1, a, s, ag2)
operation will be able to react with NewAT and originate a new action trans-
former.

De�nition 23 (Destroy action transformer operation). Let ag1 = 〈n, S1, A1〉
be an agent pro�le, ag2 = 〈m,S2, A2〉 be another agent pro�le, a ∈ A1 be an ac-
tion, and s ∈ S2 be a stimulus. Then the destroy action transformer operation
is writen as:

Destroy(n, a, s,m)

Moreover,

[Destroy(n, a, s,m)]π = destroys,ma,n .done

4 Example

Let us consider the following simple example. We shall specify an online social
network, in which users may register themselves and interact.3 The objective
of the speci�cation is to test advertisement strategies through simulation. To
this end, we de�ne an environment 〈AG,AT,EB〉 with n agents, such that each
agent agi ∈ AG is capable of performing the action buy (i.e., to buy the ad-
vertised product) and sendMsg (i.e., to send some message to another agent),
as well as receiving the stimuli gui1, gui2 (i.e., the graphical user interface of
the website can be set in two di�erent ways), ad1, ad2 (i.e., there are two dif-
ferent possible advertisements) and msg (i.e., a message received). Formally,
agi = 〈i, {gui1, gui2, ad1, ad2,msg}, {buy, sendMsg}〉.

The action transformers among the agents allow them to send messages
to their friends. Of course, the particular topology of this network can vary,
but in essence each agent agi shall have some action transformers of the form
〈agi, sendMsg,msg, agj〉. The e�ect of such a message could be similar to that
of an advertisement (i.e., a product recommendation by a friend).

Finally, and most importantly, for each agent ag ∈ AG, we de�ne the follow-
ing new environment behavior ebi ∈ EB:

(BeginStimulation(gui1, agi) +BeginStimulation(gui2, agi));
(Stimulate(ad1, agi) + Stimulate(ad2, agi))
These ebi specify four possible simulation sequences concerning each agent.

For instance, in some simulation run, agent ag1 could be stimulated by
BeginStimulation(gui1, ag1) and then by Stimulate(ad1, ag1). However, it could
be that this particular sequence would be ine�ective in eliciting the agent's buy
action, in which case another sequence could be tried. The important thing,

3 Actual examples of such networks include popular websites such as
www.facebbok.com, www.orkut.com and www.myspace.com.



though, is that these trials can all be performed automatically, since they are
explicit in the environment de�nition. This shows how EMMAS can endow sim-
ulators with some formal veri�cation capabilities.

5 Conclusion

In this paper we have presented a formalization for environments of MASs. We
provided a high-level description for this formalization, with a semantics given
using the π-calculus. We found necessary to perform some adjustments on the
standard behavior induced by the π-calculus' operational semantics in order to
allow its integration with the remaining parts of the proposed approach. Further-
more, we avoided explicit temporal references in this formalization. However, it
should be possible to add an explicit notion of time to EMMAS, though this
would introduce new complications as well.

The presented environments have both structural and operational aspects.
That is to say, they represent certain structures, which can then be changed by
certain operations. These operations serve to two purposes. First, they provide
a way to specify behaviors of the environments themselves (e.g., environment
responses to the actions of agents). Second, they allow the succinct speci�cation
of several possible scenarios for an environment (e.g., several possible ways of
stimulating agents). This latter possibility is one of the great advantages o�ered
by the use of a process algebra as a semantic basis (e.g., an algebraic expression
a+ b de�nes the non-deterministic possibility of either a or b), and renders our
approach particularly unique insofar as environments for MASs are concerned.
We may now formulate questions concerning the analysis of our MASs:

� Since the semantics of EMMAS is given as an LTS, it follows that now we
need criteria for selecting paths in it. With such paths, we shall be able to
perform concrete simulations.

� Concerning implementation, we believe that the π-calculus base can be par-
ticularly useful, since we could implement its few elements in order to have
our whole model on top of it. A similar approach is taken by Wang and Wysk
[12]. More generally, there are programming languages based on π-calculus,
such as the Join-Calculus [1] and Pict [8].

Finally, though EMMAS is designed to work with a particular agent model
[10], it actually imposes few restrictions on the agents, and its principles are
general. Hence, it could perhaps be adapted to work with other agent models.

Acknowledgements

The authors would like to thank Prof. Dr. Marie-Claude Gaudel (Laboratoire de
Recherche en Informatique, Université Paris-Sud 11) for her numerous comments
and suggestions during the preparation of this work.

This project bene�ted from the �nancial support of Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de
Desenvolvimento Cientí�co e Tecnológico (CNPq).



References

1. Fournet, C., Gonthier, G.: The join calculus: A language for distributed mo-
bile programming. In: In Proceedings of the Applied Semantics Summer School
(APPSEM), Caminha. pp. 268�332. Springer-Verlag (2000)

2. Gilbert, N., Bankers, S.: Platforms and methods for agent-based modeling. Pro-
ceedings of the National Academy of Sciences of the United States 99(Supplement
3) (2002)

3. Luke, S., Cio�-Revilla, C., Panait, L., Sullivan, K.: MASON: A new multi-agent
simulation toolkit (2004), http://cs.gmu.edu/ eclab/projects/mason/

4. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press (1999)

5. Minar, N., Burkhart, R., Langton, C., Askenazi., M.: The Swarm simulation sys-
tem: A toolkit for building multi-agent simulations (1996), working Paper 96-06-
042

6. North, M., Collier, N., Vos, J.R.: Experiences creating three implementations of
the Repast agent modeling toolkit. ACM Transactions on Modeling and Computer
Simulation 16(1), 1�25 (2006), http://repast.sourceforge.net/

7. Parrow, J.: An introduction to the pi-calculus. In: Bergstra, J.A., Ponse, A.,
Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 479�543. Elsevier (2001)

8. Pierce, B.C., Turner, D.N.: Pict: A programming language based on the pi-calculus.
In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction:
Essays in Honour of Robin Milner. MIT Press (1997)

9. da Silva, P.S.: An environment speci�cation language for multi-agent systems
(2009), Technical Report 1531 � Université Paris-Sud 11, Laboratoire de Recherche
en Informatique.

10. da Silva, P.S., de Melo, A.C.V.: A simulation-oriented formalization for a psycho-
logical theory. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007 Proceedings. Lecture
Notes in Computer Science, vol. 4422, pp. 42�56. Springer-Verlag (2007)

11. Skinner, B.F.: Science and Human Behavior. The Free Press (1953)
12. Wang, J., Wysk, R.A.: A pi-calculus formalism for discrete event simulation. In:

WSC '08: Proceedings of the 40th Conference on Winter Simulation. pp. 703�711.
Winter Simulation Conference (2008)

13. Weiss, G. (ed.): Multiagent systems: a modern approach to distributed arti�cial
intelligence. MIT Press, Cambridge, MA, USA (1999)

14. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for
multiagent systems: State-of-the-art and research challenges. In: et al., D.W. (ed.)
Proceedings of the 1st International Workshop on Environments for Multi-agent
Systems (Lecture Notes in Computer Science, 3374). pp. 1�47. Springer (2005)


