
An Approach for the Verification of Multi-Agent
Systems by Formally Guided Simulations

Paulo Salem da Silva
University of São Paulo

Department of Computer Science
São Paulo – Brazil
salem@ime.usp.br

Ana C. V. de Melo
University of São Paulo

Department of Computer Science
São Paulo – Brazil
acvm@ime.usp.br

Abstract—Multi-Agent Systems (MASs) can be used
to model human and animal societies, for the purpose of
analyzing their properties by computational means. We
propose a verification technique that investigates such
MASs by means of guided simulations. This is achieved
by modeling the evolutions of an MAS as a transition
system (implicitly), and the property to be verified
as another transition system (explicitly). The former
is derived (on-the-fly) from a formal specification of
the MAS’s environment. The latter, which we call a
simulation purpose, is used both to verify the property
and to guide the simulation. In this way, only the
states that are relevant for the property in question are
actually simulated. Algorithmically, this corresponds to
building a synchronous product of these two transitions
systems on-the-fly and using it to operate a simulator.
This paper presents an overall account of this approach,
whose several parts were developed in a number of pre-
vious works. Our main objective here is to provide an
overall account of the technique in a succinct manner,
so that its most important and general features are
highlighted. To clarify the theoretical discussions and
show their practical importance, we develop concrete
working examples along the text.

Keywords—multi-agent systems; social simulation;
on-the-fly verification; model-based testing; behaviorism;
environments; social networks.

I. Introduction

This paper presents an approach to the verification
and exploration of multi-agent systems (MASs) through
simulations. We have been developing it in a number of
previous works (especially [1], [2], [3]), culminating in a
doctoral thesis [4]. Here we do not pursue in minute detail
the many parts that form the approach, for this can be
found in those works. Rather, our purpose is to provide an
overall and integrated account of our method, something
that has not yet been properly done outside the large body
of the thesis. To do so, we employ concrete examples from
our previous works to motivate, unify and illustrate the
theoretical discussions. The ideas presented here may have
broad applications beyond our particular realizations.

Our concern is with MASs in the context of social
simulation. We propose a verification technique that in-
vestigates such MASs by means of guided simulations.
This is achieved by modeling the evolutions of an MAS
as a transition system (implicitly), and the property to

be verified as another transition system (explicitly). The
former is derived (on-the-fly) from a formal specification
of the MAS’s environment. The latter, which we call a
simulation purpose, is used both to verify the property
and to guide the simulation. In this way, only the states
that are relevant for the property in question are actually
simulated. Algorithmically, this corresponds to building a
synchronous product of these two transitions systems on-
the-fly and using it to operate a simulator.

In order to calculate the transition system that mod-
els the evolution of the MAS, we impose the following
structure to the MAS. Agents are considered as executable
black-boxes which receive inputs (i.e., stimuli) and produce
outputs (i.e., actions). The environment, however, is ex-
amined in more detail. It is given as a formal specification
which has a corresponding implementation capable of both
providing inputs to and receiving outputs of agents. To
generate the transition system, the formal specification of
the environment is used to determine the next possible
states. The agent implementations, in turn, are executed
(i.e., the agents are simulated) to actually build these
next states. That is to say, the environments determine an
over-approximation of the state-space (this is the formal
aspect), whereas agents’ actions make this approximation
precise (this is the simulation aspect). Figure 1 shows the
elements of the proposed method.

There has been much research in both simulation [5]
and, increasingly, formal verification of MASs (e.g., MC-
MAS [6]). However, very few attempts exist in combining
these two approaches. A notable exception is the work of
Bosse et al. [7], in which linear-time properties can be
checked over simulation traces a posteriori. In contrast,
our method actually guides the simulation.

Though our approach is quite general, our motivation
and examples are based on a particular kind of social
models, namely, those following behaviorist1 principles,
which contrasts with the more dominant cognitive school of
thought found in the MAS literature. From the verification
point of view, this has the advantage of allowing us to
concentrate the formal manipulations on the environments.

1In this paper, the term “behavioral” (and derivatives) refers to
the psychological approach, not the Artificial Intelligence movement
that goes by this name. These are only superficially related, it is
unfortunate that the same term is traditionally used in both cases.

2013 IEEE/WIC/ACM International Conferences on Web Intelligence (WI) and Intelligent Agent Technology (IAT)

978-1-4799-2902-3/13 $31.00 © 2013 IEEE

DOI 10.1109/WI-IAT.2013.119

266

Fig. 1. Verification and simulation elements interaction. Notice, in
particular, the important role that the environment has in relating
verification and simulation. It acts as a coordinator which, on the one
hand, formally defines what can be done, while on the other hand
requests actual simulator operations.

We employ two working examples along this text.
The first models a dog subject to experimentation, in
the spirit of Pavlov’s classical conditioning experiments
(hereafter referred to as Pavlovian Dog example). It is a
simple example designed to show the most basic features
of the approach. The second defines a MAS formed by
a teacher and several students (hereafter referred to as
School Children example). The teacher wants the students
to do their homework, but students may fail to do so owing
to a number of environmental distractions (e.g., they may
prefer to watch television instead). Both examples have
actually been built and run in a proof-of-concept tool that
we developed, called Formally Guided Simulator (FGS).
As of this paper, FGS is also publicly available. 2

This text is structured as follows. It begins by describ-
ing the important characteristics of agents (Section II) and
environments (Section III), thereby establishing the MAS
to be used. Next, the verification and exploration technique
is presented (Section IV). Finally, we conclude (Section V).
Related work is presented throughout the whole extent of
the text, since in this manner it is easier to compare each
of our developments with existing work.

II. Agents

The inner workings of agents, especially of so-called
intelligent and cognitive agents, is often the focus of
MAS research. These approaches center largely on what
constitutes rational decisions, notably in the case of agents
with limited computing capabilities. The Beliefs-Desires-
Intentions (BDI) architecture [8] is a well-known example.

2Executables, source code (in Java) and full input examples
(given as eXtensible Markup Language – XML – files) can currently
be downloaded from https://github.com/paulosalem/FGS.The com-
plete development of the examples, including the actual outputs, is
given in [4]. Other similar examples are also available.

For the purpose of the technique presented here, how-
ever, such internal models are largely irrelevant. Detailed
formal manipulations are reserved for the structure of the
environment, and the behavior of agents is taken into
account by simulating them as black-boxes which take
inputs and produce outputs. So, as far as agent modeling
is concerned, what counts is the interaction of the agent
and its environment. Three factors are fundamental in this
respect:

• The means by which the agent influences its envi-
ronment (i.e., actions);

• The means by which the environment influences
the agent (i.e., stimuli);

• The autonomy of the agent.

During verification and simulation, each agent is repre-
sented by an agent profile which specifies the actions it is
capable of and the stimuli it can perceive, thereby estab-
lishing an interface that connects it to its environment.

Autonomy is a property usually ascribed to any agent.
Informally, it denotes the fact that the agent is free to
choose its actions. In our approach, this is formalized
by assuming that, at any given state, any of the agent’s
actions may be emitted. This introduces a source of non-
determinism in the evolution of the MAS.

These general characteristics suffice to adopt the tech-
nique proposed here. Nevertheless, a concrete, executable,
agent model is still necessary – something to run within
the black-boxes. Since our examples were developed in the
context of one such model, we briefly introduce it now.

A. Agent Architecture, Implementation and Simulation

We chose to develop and work with a behaviorist
agent architecture [1], inspired by behavioral psychology,
instead of the more popular cognitive ones. Our solution is
called Behaviorist Agent Architecture. We formalized3 (in
the Z Notation [9]) and implemented (in Java) an agent
architecture based on the Behavior Analysis theory of B.
F. Skinner [10]. In this theory, the actions of agents (called
“organisms”) are seen as the result of past stimulation and
certain innate parameters according to behavioral laws.
The focus is not in mental qualities such as the nature
of reason, but merely in the prediction and control of
behavior by means of environmental stimulation.

Given the distinctive behaviorist point of view adopted,
the problems we address differ considerably from those
typically used in the MAS literature (e.g., auctions). Our
examples are partly inspired by the literature on behav-
iorist psychology, but add innovations that arise from our
particular computational approach (this will be clear in
Section III).

3Even though the architecture is formalized, this formalization
is not manipulated for the purpose of the verification technique
presented in this paper. This is reserved for the formal description
of environments. There are two main reason for this: (i) the formal-
ization of agents is much more complex and thus more difficult to
properly analyze by formal means; and (ii) in an abstract fashion,
the global MAS evolution is more readily related to the environment,
which permeates everything, than to each individual agent.

267

We start by showing some aspects of the agents con-
sidered in our two working examples. Owing to the limited
space here, these and later specifications are only partial,
tailored to illustrate particularly interesting points.

1) Example (Pavlovian Dog): The crucial point in clas-
sical conditioning is the creation of a relation between an
initially neutral stimulus to a stimulus which already has
value (i.e., a utility). Thus, the following is an excerpt of
the necessary parametrization of the dog agent4:

dog ∈ Organism
{food, injection, neutral, bark sound,

bell,whistle, veterinary} ⊂ Stimulusdog
primaryStimulidog = {food, injection, neutral,

bark sound}
primary utilitydog(food) = 0.9
primary utilitydog(injection) = −0.6
primary utilitydog(neutral) = neutral utility
primary utilitydog(bark sound) = 0.1

The above definitions specify an organism (i.e., the
dog), a set of stimuli and set of primary stimuli which have
predefined utilities (i.e., primary utilities). One possible
experiment to perform with this dog would be to teach it
that the stimulus whistle is always followed by the stimulus
food, thereby indirectly assigning an utility to whistle.

2) Example (School Children): There are many agents
in this example, but let us just examine some character-
istics of a particular child, c1. The child can perceive a
number of possible stimuli, some of which have a primary
utility. Importantly, he or she prefers to watch TV rather
than to receive a prize from the teacher.

c1 ∈ Organism
{prize, disapproval, homework,

tv, cry sound} ⊂ Stimulusc1
primary utilityc1(prize) = 0.5
primary utilityc1(disapproval) = −0.2
primary utilityc1(tv) = 0.6

The child can also perform actions. However, some
actions may conflict, which means that they cannot be per-
formed both at the same time. For instance, do homework
and watch tv conflict in this manner.

{do homework, study,watch tv, idle} ⊂ Actionc1
conflictc1(do homework,watch tv) = conflicting

III. Environments

In comparison with agents, environments of MASs have
received little attention, as the survey of Weyns et al. [11]
points out. However, environments can be of great use
to the automated analysis of MASs. The reason is that
they are often simple and amenable to formal descriptions,
which in turn facilitates manipulating them and reasoning

4Although the actual formal specification originally used in [1],
[4] is given in the Z Notation, here we use standard mathematical
notation. This is possible because we do not develop the specification
in detail in this text, and for the sake of clarity it is worth to translate
it to a more readily understandable format.

about their properties. In fact, the simplicity of environ-
ments may explain why they have historically received
little attention.

To harness the potential of environments, we have
developed the Environment Model for Multi-Agent Systems
(EMMAS) in [2]. Its main features, which we present in
this section, are the following:

• Non-determinism: it expresses several possibilities
of how the MAS may evolve.

• It may define behaviors of the environment itself,
in the form of operations, which can manipulate
agents contained therein (this and the previous
point are addressed in Section III-A).

• Agents exist within it as nodes in a social network,
rather than as bodies in physical space. The envi-
ronment mediates the relation between agents, and
can also affect agents directly (Section III-B).

• It has a formal semantics in terms of transition
systems. More specifically, EMMAS employs the
π-calculus process algebra [12] to achieve this (Sec-
tion III-C).

To facilitate reading, we use this color when writing
EMMAS operations and tuples, and this color when writ-
ing sets in the context of an EMMAS specification.

A. Experimentation

An environment defines the context in which the agents
exist, which is more than merely setting initial conditions.
It includes behaviors pertaining to the environment itself,
which may be executed either in response to an agent’s
actions or independently of any such action. This envi-
ronmental context can be seen as an experimental setup,
which defines all the possible experiments that can be
performed in the agents. One may provide (in a process
algebraic style) environment behaviors in EMMAS in order
to define such an experimental setup. This works quite
naturally with our behaviorist agent model, in which all
behavioral phenomena can be defined in environmental
terms. But, of course, such experimental environments can
also be used with other kinds of agents.

From its very core, thus, EMMAS is concerned with the
systematic exploration of possibilities (i.e., with formally-
guided verifications). This focus contrasts with the other
few existing approaches to environment formalization, such
as [13], in which the main concerns are the definition and
execution of MASs, and not their systematic analysis.

1) Example (Pavlovian Dog): There are a number of
environment behaviors, as follows:

eb1 = ER(salivate, dog,NOP)
eb2 = ER(bark, dog,NOP)
eb3 = ER(push lever, dog, Stimulate(bell, dog))
eb4 = (Stimulate(bell, dog); Stimulate(food, dog))+

(Stimulate(whistle, dog); Stimulate(food, dog))

Let us comment on the role of each of these:

268

• eb1 and eb2 define environment behaviors that
react to the actions of salivate and bark, respec-
tively (ER stands for environment response). These
actions have no particular consequence in this envi-
ronment, so the reaction is a do nothing operation
(NOP). However, the actions will be relevant later,
when we specify the simulation purpose to be
checked. Though apparently pointless, eb1 and eb2
ensure that salivate and bark are possible in the
environment, thus visible to the simulator.

• eb3, on the other hand, is an environment behavior
that actually does something. Whenever the dog
pushes a lever, it gets stimulated with the sound
of a bell. This can be understood as an apparatus
available for the dog to manipulate.

• eb4 has a more experimental role. It defines
two alternative ways in which the environment
can manipulate the dog, by means of the non-
deterministic choice operator (+). In the first case,
the bell stimulus is delivered, and later the food
stimulus. In the second case, the whistle stimulus
is delivered, and later the food stimulus. The ob-
jective of both is to try to condition either bell
or whistle to food, a primary stimulus. The reason
why these two alternatives are given here, and not
merely one, is that the environment must express
a range of possibilities. The actual experiments to
be performed will be defined later by a simulation
purpose, which will guide the choices among all
the possibilities offered by the environment. The
specification of multiple possibilities for the envi-
ronment is an important contribution of our ap-
proach for the modeling and simulation of MASs.

2) Example (School Children): Here we have have three
children, c1, c2 and c3. A fragment of the environment
behaviors to which they are subject is as follows:

eb1 = ER(study, c1, Stimulate(information, c1))
eb2 = ER(study, c2, Stimulate(information, c2))
eb3 = ER(study, c3, Stimulate(information, c3))
eb4 = ER(watch tv, c1, Stimulate(tv, c1))
eb5 = ER(watch tv, c2, Stimulate(tv, c2))
eb6 = ER(watch tv, c3, Stimulate(tv, c3))

These behaviors allow students to either study or waste
time watching television. This gives an opportunity for the
children to procrastinate their homework. During simula-
tion, this might interfere in the observed behaviors. Note
that we assume that the children’s environment is equal to
all of them. This does not need to be the case, however.
For instance, by suppressing eb4 we would be defining that
there is no TV available for c1, even though c1 would still
be capable of emitting the watch tv action.

In the environment, there is nothing that forbids a child
from both studying and watching TV at the same time.
However, recall that in Section II we defined that study
and watch tv conflict within the agent. Therefore, during
simulation, it will never be the case that study and watch tv
are emitted at the same time by a child. This is an example
of how the formal specification of the environment depends

on the actual observation of agent actions (and thereby
on the unobservable internal mechanisms of the agent) to
generate the appropriate simulation.

B. Structure

In EMMAS, instead of representing the physical po-
sition of agents, we represent their relationships. That is
to say, the MAS is viewed as a social network. Given the
behaviorist point of view that we adopt, these relationships
are modeled by defining how the actions of an agent are
transformed in stimuli for other agents by means of action
transformers. An agent is related to another if it can
stimulate the other in this manner.

Even though a social network structure has technical
advantages in certain circumstances (e.g., to model rela-
tionships), the fundamental point here is not that they are
indispensable. Rather, it is simply that some well-defined
structure is necessary so that it can be formalized and thus
systematically manipulated. Our choice for social networks
is justified by the fact that there exist convenient for-
malisms to denote both these networks and the operations
of Section III-A. In particular, we have used the π-calculus
process algebra to formalize EMMAS.

1) Example (Pavlovian Dog): In this simple example,
the relation to other agents is not relevant at all, since there
is only one agent. Nevertheless, this agent is represented
as a lonely node in an otherwise empty social network.
This node is given as an agent profile, which is a tuple
composed by an identifier (in this case, 0), a set of stimuli
and a set of actions. As far as the environment specification
is concerned, this information is sufficient to interact with
the agent.

S = {food, bell,whistle, injection, veterinary,
neutral, bark sound}

A = {salivate, bark, sit, push lever}
dog = 〈0, S,A〉

2) Example (School Children): In this example we have
two types of agents, namely, a teacher (denoted by t)
and the children (denoted by c1, c2, c3). The teacher has
an agent profile that allows him to provide homework,
prizes, and rewards to students, as well as to receive money
as payment from the school. The children, in turn, can
perceive the relevant stimuli and perform the necessary
actions to interact with such a teacher, but are also capable
of interacting both among themselves and with other
elements (e.g., television).

St = {money, homework1, homework2, homework3,
see annoying1, see annoying2, see annoying3}

At = {assign homework, reward1, reward2, reward3,
punish1, punish2, punish3}

Sc = {prize, disapproval, homework, provocation,
information, tv, cry sound, neutral}

Ac = {do homework, study, annoy,watch tv, cry, idle}

t = 〈0, St,At〉
c1 = 〈1, Sc,Ac〉
c2 = 〈2, Sc,Ac〉
c3 = 〈3, Sc,Ac〉

269

Owing to the authority of the teacher and to the
configuration of the class, there is a fixed social network
that allows the agents to interact in several ways. The
links in this network are action transformers, which are
tuples of the form 〈ag1, a, s, ag2〉 defining that when ag1

emits action a, agent ag2 will receive stimulus s. Note that
the same action may participate in multiple transformers.
Here is a fragment of the specification for the set of action
transformers.

AT =
{〈t, reward1, prize, c1〉, 〈t, reward2, prize, c2〉,
〈t, reward3, prize, c3〉,

〈t, punish1, disapproval, c1〉,
〈t, punish2, disapproval, c2〉,
〈t, punish3, disapproval, c3〉,

〈t, assign homework, homework, c1〉,
〈t, assign homework, homework, c2〉,
〈t, assign homework, homework, c3〉,

〈c1, do homework, homework, t〉,
〈c2, do homework, homework, t〉,
〈c3, do homework, homework, t〉,

〈c1, annoy, provocation, c2〉, 〈c2, annoy, provocation, c1〉,
〈c1, annoy, provocation, c3〉, 〈c3, annoy, provocation, c1〉,
〈c2, annoy, provocation, c3〉, 〈c3, annoy, provocation, c2〉,

〈c1, annoy, see annoying1, t〉,
〈c2, annoy, see annoying2, t〉,
〈c3, annoy, see annoying3, t〉,

. . .}

The intuitive meaning of these several action trans-
formers can be grasped from their definition. Nonetheless,
let us comment on some of them:

• 〈t, reward1, prize, c1〉 specifies that the teacher has
the power to reward student c1 with a prize. Other
similar action transformers specify other powers
with respect to the children, such as the power
to punish and assign homework. These are formal-
izations of the social norm that dictates that the
teacher has a certain authority over the students.

• 〈c1, annoy, provocation, c2〉 specifies that the child
c1 can annoy c2, an act that is perceived as a
provocation. This does not mean that c1 will annoy
c2, but only that it has the possibility of doing so.
This can be the case, for example, if c1 and c2 sit
close to one another in the class. However, EMMAS
abstracts any such physical location properties,
and preserves only the logical relation between the
agents.

• 〈c1, annoy, see annoying1, t〉 specifies that whenever
c1 annoys another child, the teacher will observe it.
This is an example of how the same action can have
more than one kind of consequence (i.e., annoy
another child and allow the teacher to see this).

C. Formal Semantics

In order to allow the execution and systematic ex-
ploration of the environment constructs seen above, it is
necessary to assign precise meanings to them. That is to
say, they must have a formal semantics.

Ultimately, what we need is a way to transform the
environment specification in a transition system that rep-
resents all the possible evolutions of the MAS. Each path in
such a transition system represents one possible simulation
of the MAS. As we shall see in Section IV-B, this is used
to check whether certain properties hold for the MAS by
systematically simulating the relevant paths.

More precisely, we employ an annotated transition
system (ATS) to this end. Essentially, an ATS is tuple
〈S,E,P,→, L, s0〉 of states (S), events (E), propositions (P),
a transition relation from states to states through events
(→: S×E×S), a labeling function that assign propositions
to states and, finally, an initial state s0 ∈ S.

In EMMAS, an ATS is built in two steps. First, the EM-
MAS specification is translated into a (large) π-calculus
expression. We do not explore the details of this translation
(nor of π-calculus) here (see [2], [4] for this). For our
purposes, it suffices to point out that π-calculus:

• provides a way to express processes algebraically,
with operators to specify non-deterministic choice
and parallel composition, among others. This is
very similar to EMMAS itself, which adds abstrac-
tions on top of such fundamental elements. For
example, the EMMAS expression
(BeginStimulation(s1, ag) + BeginStimulation(s2, ag))
is translated as
beginningn

s1(x).stablen
s1(x).done(x)+

beginningn
s2(x).stablen

s2(x).done(x)
in π-calculus (where n is the identifier assigned to
agent ag, and x is an arbitrary free variable).

• defines channel-based communication between pro-
cesses as the fundamental concept that allows
agents to interact.

• has an operational semantics. This means that
any π-calculus expression can be converted to a
transition system.

The second step follows from this last point. Once
the EMMAS specification is translated into π-calculus, an
ATS is generated by employing the π-calculus’ operational
semantics, annotating it with some more information and
finally pruning it using certain constraints. It is worth
noting that a special event in this ATS, !commit, signals
when it is appropriate to change the stimulation being
transmitted to and check what actions are being emitted
by the agents, as well as giving these agents a chance
to modify their internal state. That is to say, whenever
!commit is found during a simulation, the verification and
the simulation aspects of the MAS interact (i.e., the rift in
Figure 1 is surmounted).

270

q0{} q3

{}

q1

{h}
q2

{h}

q4

{}

S

F

SP

?beg0
whistle

�

!emit0salivate

�

!emit0salivate

?beg0
bell

!emit0bark

s0 {h}

M

s0 {h}. . .

s1

{h}. . .

s2 {h}

...

s3

{h}
. . .

s4

{h}
. . .

s5

{h}
. . . s6

{h}
. . .

!beg0
whistle

!commit
?emit0salivate

?emit0bark

!beg0
bell

?emit0sit

Fig. 2. In this example, the simulation purpose SP guides the
simulation so that a whistle stimulus is delivered to an organism (a
dog), then anything can happen, and finally the organism salivates.
Only the shaded runs can synchronize to achieve success. States are
annotated with propositions and transitions with events. The state
labeled with S is success, and the one labeled with F is failure.
The dots (. . .) denote that M continues beyond the states shown (it
is possibly infinite).

IV. Verification and Exploration

One models an MAS in order to study its properties.
We propose a way to do so by formulating hypotheses
about the MAS and checking whether they hold or not
(e.g., “every time the agent does X, will it do Y later?”).
If a hypothesis does not hold, it means that either the
hypothesis is false or the MAS has not been correctly spec-
ified. The judgement to be made depends of our objectives
in each particular circumstance. Are we trying to discover
some law about the MAS? In this case, if a hypothesis that
represents this law turns out to be false, it is the hypothesis
that is incorrect, not the MAS. Are we trying to engineer
an MAS that obey some law? In this case we have the
opposite, a falsified hypothesis indicates a problem in the
MAS. Hence, the verification to be carried out is actually
an experimentation procedure to learn about MAS models,
not only to find implementation errors, as it is often the
case with verification methods.

In what follows we examine how such hypotheses are
formulated (Section IV-A) and then the algorithms actu-
ally used for verification and exploration (Section IV-B).
Further details about both of these aspects, in the more
general context of discrete-event simulation, can be found
in [3] and [4].

A. Simulation Purposes and Satisfiability Relations

A hypothesis is defined by specifying a simulation
purpose and a satisfiability relation. If the MAS satisfies
the specified simulation purpose with respect to the desired
satisfiability relation, than the hypothesis is corroborated.
Otherwise, it is falsified. The idea of using such a simu-
lation purpose is inspired by the TGV [14] approach to
model-based testing, in which formal test purposes are
used to select relevant test cases. Here, a formal simulation
purpose is used to select relevant simulations executions,
though of course the criteria of relevance, among other
technicalities, are quite different.

Formally, a simulation purpose is an ATS subject to
further restrictions. In particular, it is a finite transition
system and defines two special states, success and fail-
ure. All runs that lead to success denote desirable simula-
tions, whereas all that lead to failure denote undesirable
ones.

The satisfiability relations, in turn, require the intro-
duction of another technical definition, namely, the notion
of synchronous product. Given an ATS M that models
an MAS, and a simulation purpose SP, their synchronous
product (denoted by SP ⊗M) is another ATS in which
every run represents a possible evolution of M which has
been allowed by the SP. Each state in SP ⊗M takes the
form of (q, s), where s is a state of M, and q is a state
of SP. There are precise rules that determine when states
and events synchronize. For example, an output event (e.g.,
!n) at the simulation level (i.e., M) can synchronize with
an input (e.g., ?n) event with the same name (n) at the
verification level (i.e., SP). Figure 2 shows an example of
SP, M and runs that synchronize to form SP ⊗M.

These runs may terminate in a state (q, s) where
q = success or q = failure, meaning that the run in
question is desirable or undesirable, respectively. Different
satisfiability relations are defined, namely:

• Feasibility : SP is feasible with respect to M if
there is at least one run in SP ⊗ M which ter-
minates in a state (q, s) such that q = success.
There are weak and strong variants of this.

• Refutability : SP is refutable with respect to M
if there is at least one run in SP ⊗ M which
terminates in a state (q, s) such that q = failure.
There are weak and strong variants of this.

• Certainty : SP is certain with respect to M if all
runs in SP ⊗M terminate in a state (q, s) such
that q = success.

• Impossibility : SP is impossible with respect to M
if all runs in SP ⊗M terminate in a state (q, s)
such that q = failure.

1) Example (Pavlovian Dog): Let us now define a sim-
ulation purpose that can perform some experiments in the
dog in order to show its classical conditioning capabilities.
We begin by defining the states (Q) and events (E) of the
simulation purpose.

Q = {q0, q1, q2, q3, q4, q5, q6, q7,
q8, q9, q10, q11, q12, success, failure}

271

E = {!emit0salivate, !stop0
salivate, !emit0pushlever,

?beginning0
food, ?stable0food,

?beginning0whistle, ?stable0whistle,
?beginning0

bell, ?stable0bell,
?ending0

bell, ?absent0bell}

Events follow a peculiar naming convention. The prefix
! denote an event that is generated by an agent, while
the prefix ? denotes an event that is generated by the
environment. For each event, a superscript indicates the
agent to which it applies and a subscript denotes either
an action or a stimulus. The names emit and stop refer to
the start and termination of an agent action, respectively.
The names absent, beginning, stable and ending refer to the
several stages through which a stimulation must pass.

The interesting thing now is to define, through the
possible transitions, the experiments to perform. We will
define two such experiments. Below, the � denotes a
special event that can synchronize with any other (i.e., it
specifies that any event found at this point is acceptable).

�= {(q0, ?beginning0
whistle, q1), (q1,�, q1),

(q1, ?stable0whistle, q3), (q3,�, q3),
(q3, ?beginning0

food, q4), (q4,�, q4),
(q4, ?stable0food, q4), (q4, !emit0salivate, q4),
(q4, ?beginning0

whistle, failure),
(q4, !stop0

salivate, q5), (q5,�, q5),
(q5, ?beginning0

whistle, q6), (q6,�, q6),
(q6, !emit0salivate, success),

(q0, ?beginning0
bell, q10), (q10, ?stable0bell, q10),

(q10, ?ending0
bell, q10), (q10, ?absent0bell, q10),

(q10,�, q10), (q10, ?beginning0
whistle, failure),

(q10, ?beginning0
food, q12), (q12,�, q12),

(q12, !emit0push lever, success)}

The first experiment consists in stimulating the dog
with whistle, then giving it food later, and finally stimulat-
ing it again with whistle to check whether it emits a salivate
action. If it does, it means that whistle was successfully
conditioned to food.

In the second experiment we condition bell, instead of
whistle, to food. It is assumed that the dog was already
taught that action push lever leads to stimulus bell. The
experiment, then, consists in checking whether push lever
is emitted by the dog, which shows how stimulus condi-
tioning influences learned behavior.

With all this we have the simulation purpose
〈Q,E, {},�, {}, q0〉.

2) Example (School Children): Let us build a simulation
purpose to check whether homework is being done. Again,
we define some states (Q) and events (E).

Q = {q0, q1, q2, q3, success, failure}
E = {!emit0assign homework, !emit1do homework

!emit2do homework, !emit3do homework}

The transitions, in turn, are as follows. First we require
the teacher to assign some homework. Then anything can

happen, but in the end we require that at least one of the
students actually do the homework.

�= {(q0,�, q0),
(q0, !emit0assign homework, q1), (q1,�, q1),

(q1, !emit1do homework, success),
(q1, !emit2do homework, success),
(q1, !emit3do homework, success)}

Thus we have the simulation purpose 〈Q,E, {},�
, {}, q0〉.

B. Verification Algorithms

The satisfiability relations define conditions that one
may require of the MAS, but we still need algorithms to
check whether they hold. Despite the fact that there are
several satisfiability relations, their verification is carried
out in a similar manner. All the algorithms have the
following main characteristics:

• They perform a depth-first search on the syn-
chronous product of SP and M. This search has
a maximum depth, depthmax;

• SP⊗M is computed on-the-fly (i.e., it is not com-
puted a priori ; rather, at each state, the algorithms
calculate the next states necessary to continue),
because M itself is obtained on-the-fly from: (i)
the π-calculus expressions present in each of its
states; and (ii) the relevant actions emitted by the
simulated agents in such states.

• A simulator interface is assumed to exist. This is
used to control the simulation execution, includ-
ing the possibility of storing simulator states and
backtracking to them later.

• The complexity in space is polynomial w.r.t. to
the size of the environment and other parame-
ters, and the complexity in time is exponential
w.r.t. depthmax. The actual complexity formulas are
rather intricate, but can be found in [4].

• Nevertheless, contrary to pure formal verification
methods, our algorithms do not seek to explore the
state-space exhaustively. Rather, they aim only at
employing the available computational resources to
explore as much as possible of the state-space in a
systematic and automated manner.

What the search is looking for is what changes from
one algorithm to another. In the case of feasibility, the
objective is to find one run that leads to success (i.e.,
a feasible run), thus showing an example of how to per-
form a successful simulation. In certainty, it is to find
one run that leads to failure, and therefore provides a
counter-example (if no such run is found, it means that
certainty holds w.r.t. to the available observations). The
other satisfiability relations are checked analogously to
these. Furthermore, if the verification of a satisfiability
relation requires a search depth greater than depthmax, then
the result of the algorithm is inconclusive, instead of
success or failure.

272

1) Example (Pavlovian Dog): FGS verifies in two sec-
onds that the simulation purpose is indeed weakly feasible.
It outputted the verdict success and the following feasible
run:

((q0, s0), ?beginning0
bell, (q10, s1),�, (q10, s2),�,

(q10, s3),�, (q10, s4),�, (q10, s5),�,
(q10, s6),�, (q10, s7),�, (q10, s8),�, (q10, s9),�,
(q10, s10),�, (q10, s11),�, (q10, s12),�, (q10, s13),
?ending0

bell, (q10, s14),�, (q10, s15),�,
(q10, s16),�, (q10, s17),�, (q10, s18),�,
(q10, s19), ?absent0bell, (q10, s20),�,
(q10, s21),�, (q10, s22),�, (q10, s23),�,
(q10, s24), ?beginning0

food, (q12, s25),�, (q12, s26),�,
(q12, s27), !emit0push lever, (success, s28))

The above run shows how the bell stimuli was delivered
to agent 0, and how eventually the agent emits the action
push lever.

2) Example (School Children): FGS took six seconds
to check weak feasibility. In the feasible run found, it
determined that at least agent identified by 1 did its
assigned homework. In the process of doing so, other
events took place, such as children annoying each other
and crying. These, however, did not prevent that agent
from doing the homework. The feasible run found is the
following:

((q0, s0),�, (q0, s1),�, (q0, s2),�, (q0, s3),�,
(q0, s4), !emit0assign homework, (q1, s5),�, (q1, s6),�,
(q1, s7),�, (q1, s8),�, (q1, s9), !emit1do homework,
(success, s10))

V. Conclusion

In this paper we presented the foundations of a frame-
work for the verification and exploration of MASs. This
framework is based on formal descriptions of agent inter-
faces and their environments, as well as formal definitions
of simulation purposes. These elements are used to perform
simulations in a systematic and guided manner in order to
determine whether certain precisely defined satisfiability
relations hold or not. It is thus a significant step forward
in bridging the gap between simulation and verification
techniques.

Nonetheless, the approach has certain disadvantages
too. Notably, we observed problems with respect to scal-
ability. When translating the specification of an envi-
ronment in π-calculus (or any similar formalism), one
gets very large expressions. Owing to the nature of the
calculus, calculations which are quadratic to the size of the
expression have to be performed at each simulation step.
Our implementation of the π-calculus includes a number of
optimizations to address this issue (e.g., caching previous
calculations), but it is not clear to what extent one may
carry out such a strategy.

Our realization of the proposed method is based on
a particular (behaviorist) agent architecture, as well as a
custom simulator. However, as we emphasized in the text,
the fundamental aspects of the technique can be applied to
other cases – Figure 1 offers the general blueprint. We do

hope that our FGS will be but one among many formally
guided simulators yet to come.

Acknowledgements

The authors would like to thank Prof. Dr. Marie-Claude
Gaudel, from University Paris-Sud, for crucial suggestions
that led to the present work.

This project benefited from the financial support of
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Supe-
rior (CAPES) and Conselho Nacional de Desenvolvimento
Cient́ıfico e Tecnológico (CNPq).

References

[1] P. S. da Silva and A. C. V. de Melo, “A simulation-oriented
formalization for a psychological theory,” in FASE 2007 Pro-
ceedings, ser. Lecture Notes in Computer Science, M. B. Dwyer
and A. Lopes, Eds., vol. 4422. Springer-Verlag, 2007, pp. 42–
56.

[2] ——, “A formal environment model for multi-agent systems,”
in Formal Methods: Foundations and Applications, ser. Lecture
Notes in Computer Science, J. Davies, L. Silva, and A. Simao,
Eds. Springer Berlin / Heidelberg, 2011, vol. 6527, pp. 64–79.

[3] ——, “On-the-fly verification of discrete event simulations by
means of simulation purposes,” in Proceedings of the 2011
Spring Simulation Multiconference (SpringSim’11). The So-
ciety for Modeling and Simulation International, 2011.

[4] P. S. da Silva, “Verification of behaviourist multi-agent sys-
tems by means of formally guided simulations,”Ph.D. disserta-
tion, Universidade de São Paulo and Université Paris-Sud 11,
November 2011, joint thesis between the two universities. Can
be downloaded at: http://tel.archives-ouvertes.fr/tel-
00656809.

[5] N. Gilbert and S. Bankers, “Platforms and methods for agent-
based modeling,” Proceedings of the National Academy of Sci-
ences of the United States, vol. 99, no. Supplement 3, 2002.

[6] A. Lomuscio, H. Qu, and F. Raimondi, “MCMAS: A model
checker for the verification of multi-agent systems,” in Com-
puter Aided Verification, ser. Lecture Notes in Computer Sci-
ence, A. Bouajjani and O. Maler, Eds. Springer Berlin /
Heidelberg, 2009, vol. 5643, pp. 682–688.

[7] T. Bosse, C. M. Jonker, L. van der Meij, A. Sharpanskykh, and
J. Treur, “Specification and verification of dynamics in agent
models,” Int. J. Cooperative Inf. Syst., vol. 18, no. 1, pp. 167–
193, 2009.

[8] A. S. Rao and M. P. Georgeff, “BDI agents: From theory to
practice,” in ICMAS, V. R. Lesser and L. Gasser, Eds. The
MIT Press, 1995, pp. 312–319.

[9] J. Woodcock and J. Davies, Using Z: Specification, Refinement,
and Proof. Prentice Hall, 1996.

[10] B. F. Skinner, Science and Human Behavior. The Free Press,
1953.

[11] D. Weyns, H. V. D. Parunak, F. Michel, T. Holvoet, and
J. Ferber, “Environments for multiagent systems: State-of-the-
art and research challenges,” in Proceedings of the 1st Inter-
national Workshop on Environments for Multi-agent Systems
(Lecture Notes in Computer Science, 3374), D. W. et al., Ed.
Springer, 2005, pp. 1–47.

[12] R. Milner, Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, 1999.

[13] J. Ferber and J.-P. Müller, “Influences and reactions: a model
of situated multiagent systems,” in Proceedings of ICMAS’96
(International Conference on Multi-Agent Systems). AAAI
Press, 1996.

[14] C. Jard and T. Jéron, “TGV: theory, principles and algorithms:
A tool for the automatic synthesis of conformance test cases
for non-deterministic reactive systems,” Int. J. Softw. Tools
Technol. Transf., vol. 7, no. 4, pp. 297–315, 2005.

273

