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Abstract. The increasing interest of developing and formally studying
mobile agents has taken place in the last decade. Several formalisms
and tools have been created to aid this enterprise. However, tools are
mostly developed in isolation and, therefore, are hard to use together.
The present work is an attempt to make such integration easier, through
the provision of a common ‘language’ — an ontology — for verification
tools reasoning about mobile agents.

1 Introduction

The interest for the development and formal study of mobile agents has grown in
the last decade. With the creation of theories designed for this purpose, such as
m-calculus [2[21], Distributed Join-Calculus [20,19] and Ambient Calculus [17],
it has become possible to build software capable of reasoning about properties
related to a given specification. These so called verification tools usually have
a base theory and language, as well as some equivalence definitions and proof
system.

Even for a single theory, verification tools are frequently developed in iso-
lation and, thus, with different capabilities and notations. When users need to
use various verification tools to solve a problem, they have to learn and use
each verification tool individually. Many times, users prefer to partially solve
their problems instead of learning various verification tools. On the other hand,
new verification tools are created from scratch and, then, reimplement services
already available in existing tools, instead of reusing them.

We believe that these problems can be partially solved. Since verification
tools differ only in their conventions, but not in their application domains, it is
reasonable to assume that it is possible to create a common ‘language’ on the
top of the native ‘languages’ of each verification tool. Such common ‘language’,
together with the relation among its elements, is called an ontology [3,[4]. From
a general point of view, an ontology is a language that specifies an application
domain in a way that different tools may exchange information about it. In our
case, an ontology for mobile agents verification tools must describe not only the
domain of these agents, but also the capabilities of the verification tools. In other
words, it must describe the objects being studied (i.e., mobile agents) as well
as what the verification tools can reason about (i.e., the class of properties and
equivalences the verification tools may check).
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Establishing an ontology for mobile agents can help in integrating existing
verification tools. It can be used to denote the language and capabilities of
verification tools in a mobile agents environment:

— verification tools may be registered into the system using an ontology;
— userd] may find an appropriate verification tool among the registered ones
using ontology based search criteria.

In this paper, we present an ontology for the mobile agents domain, the first
step toward the system described above. The ontology describing the verification
tools capabilities remains as work in progress and, thus, it is not presented here.

Mobile agents and, therefore, mobility itself, may be defined in several ways.
In our work, we use the w-calculus theory and tools as the mobility paradigm.
However, as it will soon become clear, our ontologies are extensible in order to
work with other mobility theories.

At last, we point out that there are other formal approaches to agent mod-
eling, such as the SMART framework [5]. However, as far as we know, these
models have not been used to foster verification tools interoperability.

In the remainder of this paper, we present the notations and tools we used
(Sect. [IT]), the ontology itself (Sect.[Z) and an usage example (Sect. B]). We also
discuss our results and the work that remains to be done (Sect. [J).

1.1 Notation and Tools

We have chosen the Web Ontology Language (OWL) [12] as the notation for our
ontologies. We had considered other options, such as UML, but found them to
be very limited. OWL, on the other hand, provides a rich logic language based
on Description Logic [I3] as well as supporting tools, since it is becoming a
mainstream industry@ resource.

Among existing tools for OWL, we opted for Protégé-2000 [14]. Protégé not
only supports OWL design, but also provides an API (Application Program-
ming Interface) that allow external software to reuse many of its resources. This
characteristic might be useful at a later stage of our work.

To make easier understanding the ontology, in this paper we present a plain
English description of it, as well as pictures generated using the OntoViz [I5]
Protégé plugin. The formal OWL definitions, along with the Protégé project
files, can be obtained in the following URL:

http://www.ime.usp.br/ salem/papers/mobile_agent_ontology.zip

2 The Mobile Agent Ontology

The purpose of our mobile agent ontology is to describe the possible components
of a mobile agent and its environment, and to provide a way to describe actual
formalisms structures, such as those from m-calculus.

! Both humans and other software systems.
2 OWL is a new W3C recommendation and W3C is mainly industry oriented.
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Notice that the ontology does not aim to describe the actual structure of
agents, this would be equivalent to create a new theory for mobility analogous
to the m-calculus. Our aim here is to describe the properties of agents structure
(e.g., elements that can be used to build an agent, not the actual blueprint of
the agent).

Tools using this ontology to exchange information about agents are benefited
because:

— They only need to represent the search criteria once, using the ontology.
Without the ontology, it could be necessary to specify several search criteria,
each one designed to match the proprietary notation employed by each tool
it is trying to communicate with;

— They may be developed using other theories rather than w-calculus, as long
as the structures from these theories can be mapped into our ontology;

— They may provide a more user-friendly description of agents, since the on-
tology is designed at a high abstraction level.

The ontology is divided in two subontologies:

— the high level description of the mobile agent domain;
— the description of the formalisms employed by the tools;

A mapping of the first onto the second subontology is also provided (Sect. 2:3)).
In the remainder of this section we shall present both subontologies and the
mapping in details.

2.1 Subontology 1: Mobile Agents

This subontology describes the domain of mobile agents. It is based on the
‘agent’ concept found in [I], which, in short, defines an agent as an entity having
sensors, actuators and that exists in an environment.

The scope of our ontology is restricted to the formal methods area and to an
special kind of agent, the mobile one. Therefore, there are two important aspects
which make our ontology unique:

— First, there are several characteristics from the agents domain which are not
useful to us. For instance, it is not of our interest to define ‘rationality’,
since it is not clear if such concept would be useful for formal verification.
We have, thus, excluded concepts that are either irrelevant or obscure;

— On the other hand, the general theory about agents found in [I] lacks several
elements that could be useful for an appropriate representation of mobility.
For example, we crafted the concept of ‘message’ as a perception.

Now we will describe the classes of this ontology. To make the concepts
clearer, we will first consider a cell phone as an example of mobile agent and
show how this device is described by the ontology.
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Example: Cell Phone. Cell phones are classical examples of mobile agents.
To understand why, let us consider the fundamental idea behind them. If you
are already familiar with that, you may wish to skip this section.

In order to enable cell phone operation in a certain region, the region is
divided in several subregions, or cells. Each cell provides a connection point
to the several cell phones inside its area. This access point is usually a station
with several antennas to which the cell phones may connect using ordinary radio
waves. Once connected, the station takes care to establish communication with
the rest of the telecommunication network. See Fig. [l

Mobility arises when a cell phone changes the cell it is in. When this happens,
the phone must terminate the connection to the previous station and start one
with the station covering the new cell. See Fig.

Fig. 1. Cell division of a region. The highlighted cell shows a cell phone connected to
the cell’s station.

Ontology Classes. As we pointed out earlier, the description of the ontology
given in this paper is in plain English.
Fig. Bl depicts the ontology graphically.

Ontology class 1 (Agent). Agents are entities which perceive and act in a
particular environment. In our example, the cell phone itself belongs to this class.
They have the following properties.

hasSensors. Zero or more instances from the Sensor class.
hasActuators. Zero or more instances from the Actuator class.
isReconfigurable. Boolean value. May the agent change its internal state
during its existence? The cell phone, for instance, is reconfigurable, since at
any given time it may be connected to a different antenna and be performing
calls to different phones.



1504  P.S. da Silva and A.C.V. de Melo

Fig. 2. Moving into another cell: (a) the phone moves physically into another region,
preparing the connection with the new station without leaving the old connection; (b)
the transition is complete and the phone is connected only to the new station

isDeterministic. Boolean value. Does the current state of affairs determine
the next action of the agent? The cell phone might be modeled either as a de-
terministic or nondeterministic agent. If we consider the phone as an agent
that answers to its user’s commands, then it is reasonable to consider it de-
terministic, for its behavior would not be random, it wouldn’t, for instance,
call a number unless it was requested to do so. On the other hand, if user
interaction was hidden (i.e., implicit), then the phone could be seen as non-
deterministic, since the user’s behaviors (e.g., making calls) would provide a
source of randomness.

isCloneable. Boolean value. Can the agent produce a copy of itself or of
its internal parts? The cell phone is not cloneable, since it cannot duplicate
itself.

hasEnvironment. One instance from the Environment class.

Ontology class 2 (Percept). A Percept is that which an Agent may sense
through its sensors. The Percept class is abstract, and concrete subclasses must
be defined. In the cell phone example, the percepts are the magnetic waves that
reach the device through its antenna.

Ontology class 3 (Message). Message class is a concrete subclass of the Per-
cept class. A Message is a piece of information that can be transmitted among
agents. In the cell phone, for instance, if the user’s voice is transmitted using
discrete data packets, we could say that such packets belong to Message class. No-
tice, though, that if there are no discrete packets, if data flows continuously, then
Message class could not be used to classify this transmission. Another Percept
subclass would have to be created to account for that.
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Agent
hasSensor ‘ Instance* | Sensor
isDeterministic ‘ Boolean
isReconfigurable ‘ Boolean Percept
hasActuator ‘ Instance* ‘ Actuator [
isCloneable | Boolean
hasEnvironment | Instance ‘ Environment

hasActuator* hasSensor* \a‘sEnvironment sa

Environment
isDeterministic | Boolean
Actuator Sensor hasMokbilityParadigm ‘ Instance | MobilityParadigm Message

isFullyObservable ‘ Boolean

isMultiagent | Boolean
isa isa hasMobilityParadigm

¥
MessageDispatcher MessageSensor MobilityParadigm

StaticMobility LinkMohbility

Fig. 3. Mobile agents domain ontology

Ontology class 4 (Sensor). A Sensor is that which may receive Percepts. Sen-
sor is an abstract class and concrete subclasses must be defined for each concrete
subclass of Percept that are supposed to be perceived.

Ontology class 5 (MessageSensor). MessageSensor is a concrete subclass
of the Sensor class. A MessageSensor is a Sensor that receives Messages. For
instance, in the cell phone, the subsystem responsible for receiving and decoding
the data packets could belong to MessageSensor class.

Ontology class 6 (Actuator). An Actuator is that which can perform actions
over the Environment or other Agents. Actuator class is abstract and concrete
subclasses must be defined for each action that the Agent may perform.

Ontology class 7 (MessageDispatcher). MessageDispatcher is a concrete
subclass of the Actuator class. A MessageDispatcher is an Actuator that sends
messages. In the cell phone example, the subsystem responsible for packing and
sending data could belong to MessageDispatcher class.

Ontology class 8 (Environment). An Environment is where Agents exist.
Cell phones, for example, exist in an environment of ‘cells’ (thus, the device’s
name). That is, physical space is divided into cells, and in each cell one or more
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antennas provide a conmection point to the phones. From the cell phone stand
point, the environment is nothing more than the antennas that it can connect to.
Environment class has the following properties.

isFullyObservable. Boolean value. Can the Agent always sense the whole
Environment? Cell phones cannot, since they are aware only of the antennas
in the current cell.

isDeterministic. Boolean value. Given the Environment’s current state and
the Agents actions, is the next Environment’s state determined? For cell
phones, since hardware may fail, it is best to assume that the Environment
is not deterministic.

isMultiagent. Boolean value. Can the Environment support more than one
Agent? That’s clearly true for cell phones.

hasMobilityParadigm. An instance from the MobilityParadigm class. How
is mobility defined in this Environment?

Ontology class 9 (MobilityParadigm). A MobilithParadigm defines how
mobility is handled by an Environment. MobilityParadigm class is abstract and
concrete subclasses must be defined.

Ontology class 10 (StaticMobility). StaticMobility is a concrete subclass of
MobilityParadigm. It defines the state of affairs in which no mobility at all takes
place.

Ontology class 11 (LinkMobility). LinkMobility is a concrete subclass of
MobilityParadigm. It defines the state of affairs in which the spatial position
of an agent is given by its links to other agents, without any notion of distance.
That’s precisely the notion of mobility that a cell phone agent has, since links to
antennas are all that such agents know about their position.

2.2 Subontology 2: Formalisms

This subontology aims at describing the actual formalism structures that the ver-
ification tools employ. The description is given considering two different levels of
abstractions. The first one defines abstract elements of any process calculus (e.g.,
operators, actions), while the second one specifies the elements of a particular
agent calculus, the m-calculus. Graphical representations are provided.

Though we focus on the m-calculus, we believe that the ontologies can be
extended to other mobility formalisms. In particular, because many of these
formalisms, such as Join-Calculus [20,19] and Ambient Calculus [I7], can be
proved equivalent to the w-calculus.

Ontology Classes. The main classes of this subontology are the following (see

Fig. @).

Ontology class 12 (Formalism). Formalism is an abstract class. Actual for-
malisms must be represented by concrete subclasses.
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Formalism

FormalElement

hasFormalElements ‘ Instance*

hasFormalElements* ™.isa

PiCalculus

FormalElement
A

isa fsa isa isa fasFormalEl ements*

PiCalculusElement

hasFormalElements ‘ Instance*

Operator Action Message PiCalculusElement

Fig. 4. Main formalism ontology classes

hasFormalElements. Zero or more instances from the FormalElement class.

Ontology class 13 (PiCalculus). PiCalculus is a concrete subclass of For-
malism class. It represents the w-calculus theory itself.

hasFormalElements. Zero or more instances from the PiCalculusElement
class.

Ontology class 14 (FormalElement). FormalElement is an abstract class.
It represents the syntactic building blocks of formalisms. This class must have
concrete subclasses for each Formalism subclass.

Ontology class 15 (Action). Action is an abstract class. It represents the
elements over which operations can be performed. That is, they are the atomic
units that the process calculus works with.

Ontology class 16 (Message). Message is an abstract class. It defines what
is sent through OutputActions and received by InputActions.

Ontology class 17 (Operator). Operator is an abstract class. Operators per-
form transformations over Actions.

A class to group together all elements from m-calculus is also provided.

Ontology class 18 (PiCalculusElement). PiCalculusElement is an abstract
subclass of FormalElement. It represents the syntactic elements found in the
m-calculus.

Action, Message and Operator classes are the main abstract concepts that
we use to describe a general process calculus. Each of these classes, in turn, have
their own subclasses and, finally, these subclasses have actual concrete classes
that represent an actual process calculus, the m-calculus.
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FormalElement

sa
Action
A
isa sa isa
UncbservableAction QutputAction InputAction
[y
isa sa isa
I I PiCalculusChannelSender PiCalculusChannelReceiver
PiCalculusUnobservableAction - - - -
isPolyadic Boolean isPolyadic | Boolean

Fig. 5. Action subclasses

Ontology class 19 (InputAction). InputAction is an abstract subclass of Ac-
tion. It represents Actions that take some input.

Ontology class 20 (OutputAction). QutputAction is an abstract subclass of
Action. It represents Actions that send some output.

Ontology class 21 (UnobservableAction).  UnobservableAction is an
abstract class. It represents Actions that do not affect other Actions.

Ontology class 22 (ChoiceOperator). ChoiceOperator is an abstract class.
ChoiceOperators are Operators that given two expressions, output one of them
in a nondeterministic manner.

FormalElement

Operator
A
sa

isa

‘ RestrictionOperator ‘ ‘ CompositionOperator ‘ ReplicationOperator ‘ ‘ ChoiceOperator ‘ ‘ PiCalculusName

PiCalculusRestriction ‘

PiCalculusComposition PiCalculusSummation

‘ PiCalculusReplication

Fig. 6. Operator and Message subclasses
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Ontology class 23 (CompositionOperator). CompositionOperator is an
abstract class. CompositionOperators are Operators that allow two expressions
nteract.

Ontology class 24 (ReplicationOperator). ReplicationOperator is an
abstract class. ReplicationOperators are Operators that create copies of an ex-
pression.

Ontology class 25 (RestrictionOperator).  RestrictionOperator is an
abstract Class. RestrictionOperators are Operators that bind an identifier to a
particular expression.

The other classes are subclasses of PiCalculusElement and of some For-
malElement. Each represents a particular construction from the m-calculus the-
ory. Their names are self-explaining, but we shall list them here for the sake of
completeness.

Farmal Elemant

53

L _:‘ PiCalculusElament w—_ _ .

e i AW e T
— o~ ., - ———
T iER L isa '/(isa \i\sa "--»._igha e isa
e o~ £ -, - i
PiCalculusChoice PiCalculusCompasition | PiC plicati | FiCalculush | PiCalculusResfriction | | PiCalculusAction Prefix

Fig. 7. m-calculus elements

Ontology class 26 (PiCalculusName). Concrete subclass of Message. De-
fines w-calculus names.

Ontology class 27 (PiCalculusActionPrefix). PiCalculusActionPrefix is
an abstract subclass of Action.

Ontology class 28 (PiCalculusChannelReceiver). PiCalculusChannelRe-
ceiver is a concrete subclass of PiCalculusActionPrefiz and InputAction classes.
It represents the m-calculus input channels. It has only one property.

isPolyadic. Boolean value. Can the channels receive messages consisting of
more than one name?

Ontology class 29 (PiCalculusChannelSender). PiCalculusChannelSender
is the concrete subclass of PiCalculusActionPrefiz and OutputAction classes. It
represents the m-calculus output channels. It has only one property.

isPolyadic. Boolean value. Can the channels send messages consisting of
more than one name?
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FormalElement

sa

PiCalculusElement

[ 3
sa

PiCalculusActionPrefix

A
isa sa isa

PiCalculusChannelReceiver PiCalculusChannelSender
PiCalculusUnaobservableAction

isPolyadic | Boolean isPolyadic | Boolean

Fig. 8. m-calculus action prefixes

Ontology class 30 (PiCalculusUnobservableAction). Concrete subclass
of UnobservableAction. The T action prefiz.

Ontology class 31 (PiCalculusComposition). Concrete subclass of Com-
postionOperator. The m-calculus composition () operator.

Ontology class 32 (PiCalculusChoice). Concrete subclass of ChoiceOpera-
tor. The m-calculus choice (+) operator.

Ontology class 33 (PiCalculusRestriction). Concrete subclass of Restric-
tionOperator. The w-calculus restriction (new) operator.

Ontology class 34 (PiCalculusReplication). Concrete subclass of Replica-
tionOperator. The w-calculus replication (1) operator.

2.3 Mappings of Agents onto Formalisms

At last, it is necessary to connect the first subontology to the second. We pro-
vide this connection using some rules which assert that the support for some
structures in one subontology exists if, and only if, the support for some other
structures from the second subontology also exists.

These rules, together with the proﬁleﬁ for a verification tool, make it possible
to find out if the verification tool matches a search criteria. The search criteria
is given using the mobile agent ontology, but the verification tool had been
originally programmed and documented having the particular formalism (e.g.,
the m-calculus) in mind.

3 The profile for a verification tool is the set of elements from both ontologies that
have been registered to be supported.
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Mapping Rules. We shall now state the rules, in a formalism-centric fashion.

Mapping rule 1 (PiCalculus). PiCalculus theory is supported if, and only if,
the Environment’s MobilityParadigm is a LinkMobility.

Mapping rule 2 (PiCalculusName).
PiCalculusName class is supported if, and only if, Message, MessageSensor
or MessageDispatcher classes are supported.

Mapping rule 3 (PiCalculusChannelReceiver). PiCalculusChannelRecei-
ver is supported if, and only if, MessageSensor class is supported.

Mapping rule 4 (PiCalculusChannelSender). PiCalculusChannelSender
1s supported if, and only if, MessageDispatcher class is supported.

Mapping rule 5 (PiCalculusUnobservableAction). PiCalculusUnobserv-
ableAction is supported if, and only if, MessageDispatcher, MessageSensor and
PiCalculusComposition classes are supported.

Mapping rule 6 (PiCalculusChoice). PiCalculusChoice is supported if, and
only if, the supported Agents have the property Deterministic set to false.

Mapping rule 7 (PiCalculusRestriction). PiCalculusRestriction is sup-
ported if, and only if, the supported Environment is not fully observable.

Mapping rule 8 (PiCalculusComposition). PiCalculusComposition is sup-
ported if, and only if, the supported Environment has its properties set according
to the following rules.

isDeterministic. Must be set to true.
isMultiagent. Must be set to true.

Mapping rule 9 (PiCalculusReplication). PiCalculusReplication is sup-
ported if, and only if, the supported Agent has its Cloneable property set to true.

3 Usage Example

Let’s now consider an example of how the ontology may be used. For simplicity,
let’s assume we have only two verification tools for the m-calculus, M; and Ma,
which differ in notations employed as well as in the supported fragments of
m-calculus.

We would like to integrate M; and M5 in a system so that we could:

— query the system to find out if either M; or My give support to a certain
subset of w-calculus that we are interested in;

— write such a query using a language which does not depend on the verifica-
tion tools’ language syntax. For instance, M7 might denote the composition
operator as ‘—’ and Ms as ‘comp’, but we wish the query to be independent
of these syntatic particularities.
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To achieve these goals, the system could use our ontology. In order to inte-

grate verification tools, the following steps could be carried out for each tool:

1.

find out which 7-calculus elements the verification tool supports. This could
be done, for example, surveying the verification tool’s documentation or
source code. In the example, let’s say that M; supports all the basid] -
calculus and that M, supports the same elements, except for the choice
operator.

register the supported elements using the formalisms subontology. In the ex-
ample, all we need to do is to tell the system that M; supports the PiCalcu-
lus formal theory with PiCalculusName, PiCalculusChannelReceiver, PiCal-
culusChannelSender, PiCalculusUnobservableAction, PiCalculusChoice, Pi-
CalculusRestriction, PiCalculusComposition and PiCalculusReplication and
tell that My supports all of those too, except for PiCalculusChoice.

PiCalculusComposition

PiCalculusChannelReceiver PiCalculusChannelSender

‘ FiCalculusUnobservableAction

isPolyadic Boclean isPolyadic | Boolean
] [} i FY
io io 1] o
N T aChannel Receiver aChannel Sender
aComposition anUnohservableAction : - :
) : isPolyadic = | false isPolyadic = | false
‘ PiCalculusReplication | ‘ FiCalculusRestriction ‘ PiCalculusChoice ‘ FiCalculusName
i
io o o o

aName

aReplication aRestriction aChoice

Fig. 9. Instances of all w-calculus elements we need

. use the mapping rules to discover which elements from the mobile agent

ontology are supported by the verification tool. In the example, we would
find out that the only difference between M7 and My is that M7 will support
choice of agents, while My won'’t.

. make these elements available to a search engine. Notice that now the veri-

fication tool’s particularities do not trouble the search, since they have been
mapped into the ontology.

Now, suppose a user wants a verification tool that supports some elements

from the w-calculus, in particular the choice operator. To locate the desired
verification tools, the following steps could be performed:

1. using the ontology, the user tells the system which elements from the 7-

4

calculus theory are required.

The subset of m-calculus which contains action prefixes, choice, composition, repli-
cation and restriction
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PiCalculus

PiCalculusElement

hasFormalElements | Instance*

io io
- M1_PiCalculus
MZ2_PiCalculus —
— aComposition
aComposition
aName
aName ——
—— aReplication
aReplication —
— aRestriction
hasFormalElements = aRestriction hasFormalElements = -
- aChoice
aChannelReceiver -
aChannelReceiver
aChannel Sender
- aChannelSender
anUnobservableAction -
anUnobservableAction

Fig. 10. Instances of the m-calculus theory that each verification tool support

2. using the mapping rules, the system transforms these elements into mobile
agent’s elements.

3. the system checks in its data base if there are any registered verification
tools that gives support to the mobile agent elements. We have seen that
only M; supports PiCalculusChoice. Thus, only M7 will be returned to the
user as a search result.

The point here is that the search is done using a common language, which
does not depend on the underlying formal theory. Although so far we have been
working only with the m-calculus, we believe that other formalisms, such as
Ambient Calculus [7] or Join-Calculus [6], could be used as well.

The example 7-calculus tools used in this section are fictitious and were
proposed to illustrate the problem of having tools for a single formalism that are
concerned with different fragments of it. In practice, we also have verification
tools for m-calculus which actually support different subsets of the theory. The
verification tool VTubaina [§], for example, does not support the choice operator,
while another tool, HAL [9,[10,[IT], does support choice but not replication. In
fact, these tools can share services although they contemplate different fragments
of m-calculus and their input languages differ.

4 Discussion

This paper presented two main ontologies: one for mobile agents and one on
formalisms of mobile agents. Besides that, the relation between elements of both
ontologies has been provided in order to show how agents can be modeled from
abstract concepts to appropriate mobile agent formalisms. 7-calculus has been
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used as instance of the formalism ontology, and an example involving two pro-
posed tools for m-calculus was presented to give insights on the usage of ontologies
as a framework to register tools and use them in a collaborative way.

The ontologies defined here have a double purpose. From a computational
stand point, it provides a common language for information exchange. This al-
lows tools using different notation to integrate, albeit in a limited fashion. On the
other hand, from the user’s point of view, the ontology defines an understandable
language, from which higher level concepts of the mobile agent domain may be
easily handled.

We have given the cell phone as an example of mobile agent that can be
modeled using our ontologies. Other examples can be easily found among modern
wireless devices (e.g., wireless networks, where computers may connect as they
move into a certain region), which share many of the cell phone’s characteristics.
Furthermore, mobile agency is also present in software systems. An example of
software mobility is the Aglets project [16].

Regarding those features, verification tools can be registered as instances of
the formalism ontology and we can further provide an environment for sharing
services from various tools. For that, a software system must actually be imple-
mented and make use of our ontologies to register verification tools in order to
build a cooperative environment. We believe that Protégé-2000 can be used as
a framework for such implementation, since it is designed as an extensibld] tool
for ontologies.

In this particular work, we have instanced the formalism ontology for -
calculus. This formalism ontology, however, is not limited to represent m-calculus.
Instances of this ontology for other formalisms, such as Join-Calculus and Am-
bient Calculus, can be produced in the same way. With such new instances of
formalisms, we could register tools based on these other calculus and, better than
this, provide an environment that comprises services from different formalisms.
The ontological relation among all instanced formalisms can be established via
the main formalism ontology and, for certain classes of problems, tools services
from different formalisms can be shared.

The ontology developed in the present work refers only to the representation
of agents. To provide an environment for sharing services from verification tools
for mobile agent systems, we also need, as stated in the introduction, an ontology
to capture the capabilities of the verification tools. This study is in progress and is
first devoted to capabilities of model-checkers and equivalence verification tools.

We don’t have the expectation of solving the whole problem of services-
collaboration among verification tools for mobile agent systems with such on-
tologies. We already known that ontologies are not enough for knowledge shar-
ing [18] because a semantic mapping is necessary for certain pairs of formalisms,
and this problem remains in services-sharing among verification tools for mobile
agents. However, many of the formalisms for mobile agents are comparable and
a great part of them can be mapped without a semantic conversion. The present
work is a step-forward to provide services-sharing among tools for such classes of

5 Through the use of plug-ins.
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problems. For a complete services-sharing, a study on pairwise verification tools
must be conducted and there is no guarantee that a semantic mapping can be
found for each pair of formalisms.

Finally, we note that the ontologies described in this paper have not yet been

implemented in a working software system.
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