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Abstract—In this article we propose an agent architecture
based on Behavior Analysis, a behaviorist psychology theory. The
main characteristic of this theory is the description of complex
behavior exclusively in terms of stimulation and behavioral
responses. That is to say, in terms of observable and controllable
environmental events, instead of the internal mental mechanisms
typically found in other approaches to psychology. In this way, not
only trivial reflexive actions, but also a number of sophisticated
phenomena can be effectively modeled, such as learning and
emotional states. Our work, which we call the Behaviorist Agent
Architecture, provides a computational framework with which
to build agents according to these principles. It accounts for five
aspects of agent behavior in an integrated manner: (i) stimulus
conditioning; (ii) reflexes; (iii) operant behavior; (iv) drives; and
(v) emotions. The objective of this text and of the architecture
itself is to show that a consistent and coherent behaviorist point
of view may be useful, despite its current lack of popularity. Here
we present our overall rationale and the main ideas underlying
our agent architecture, including illustrative examples.

Keywords—multi-agent systems; agent architecture; behavior-
ism; formalization; simulation.

I. INTRODUCTION

An agent can be roughly defined as an entity which acts
autonomously within an environment, subject to stimulation
therein, and possibly interacting with other agents. But such a
definition is too abstract to provide the basis of an agency
theory. Therefore, it is necessary to define particular kinds
of agents, so that their structure can be detailed, further
theory can be built upon it and implementations may have
a comprehensive specification to follow.

Agent architectures aim at providing such structure, by
defining, in a computational way, the main elements that
constitute a certain kind of agent, and showing how these
elements relate. Concrete agents can then be obtained by
specializing some architectural elements or merely instanti-
ating them. Examples of agent architectures include the BDI
approach [2], SOAR [3] and ACT-R [4].

In this article we present an agent architecture based on
core principles of Behavior Analysis1, a well-known behav-
iorist psychology theory, as proposed by B. F. Skinner [5].
In this theory, an agent is seen as an organism capable of
being stimulated and of producing behavioral responses ac-
cording to certain mechanisms. The hallmark of the approach
lies in the definition of complex behavior in terms of these
two externally observable aspects, through abstract laws and

1Or, as it is also sometimes called, Analysis of Behavior.

constructs, without making references to internal mental and
organic characteristics of the organism. 2

Our Behaviorist Agent Architecture3, as we call it, is
designed to fulfill an architectural role with respect to Behavior
Analysis. This architecture was formally specified in the Z
Notation [8], and is fully available in a PhD thesis [9], as
part of a wider framework for the modeling, simulation and
verification of multi-agent systems. Moreover, part of this
formalization is given by [10], where we focused both on the
difficulties and on the value of formalizing informal theories.
In the present article, owing to space limitations and to reach
a wider readership, we do not include the formalization itself,
but only its underlying ideas. Here our objective is to show how
such a computational agent architecture is designed in the first
place, and what are the main characteristics necessary to endow
agents with learning and adaptive mechanisms according to
the Behavior Analysis tradition. In this manner, the article
establishes some key concepts that not only describe our own
work, but also serve as a theoretical framework for other
attempts to provide computational accounts of behaviorist
theories.

The architecture developed here is not capable of modeling
all behavioral phenomena found in the literature – it is merely
an approximation and an interpretation of the actual psycho-
logical theory. Nonetheless, it is capable of modeling many of
them, and in such a way that they relate to each other in a
coherent whole. Indeed, it is largely because of this coherence
that our formalization is suitable as an agent architecture, since
it allows different mechanisms to operate together in creating
several aspects that contribute for an interesting agent (e.g.,
a certain autonomy, learning capabilities, interaction with the
environment).

As an example of what our architecture can represent, let us
consider a behavior analytic description of a typical laboratory
experiment that one could perform on, say, a pigeon. The
pigeon is put on a cage, where both a button and a light
bulb are present. Before giving food to the pigeon, and only
then, the experimenter tuns the light on. After some time, the

2This goes far beyond reflexive actions, as we explain later.
3We realize that the word “behavior” and its variants are quite broad and

have many intuitive meanings. Nevertheless, we have chosen to keep them
as technical terms here in order to remain faithful to the naming conventions
usually employed in the behaviorist literature we draw from. Thus, all of our
references to “behavior” should be seen from this perspective, unless explicitly
noted otherwise. In particular, our use of the term should not be confused with
the use made in behavior-based robotics [6] and approaches derived from the
subsumption architecture of Brooks [7], which are biologically inspired, but
do not have a direct relation to behaviorist psychology.
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pigeon learns that light is followed by food. So every time the
light is on, the pigeon acts as if the food has arrived. This
is an example of classical conditioning. Moreover, the pigeon
initially does only random actions, because it does not know
how its environment works. But eventually it discovers that by
pushing a button, the light is turned on. This is an example of
operant conditioning. By combining these two conditionings,
the pigeon then becomes likely to emit the behavior of pushing
the button when it wants to eat. Its hunger, in turn, is given by
a drive, which changes the utility of stimuli according to how
much the pigeon has already eaten. Finally, the experimenter
might decide that no food shall be given in association with the
light. In this case, the pigeon will be gradually unconditioned,
and the behavior of pushing the button will be extinct. This
causes frustration on the pigeon.

The meaning of the emphasized terms will be given later
in the article, but for the moment it suffices to note that they
provide a relevant vocabulary to describe the experiment. Re-
markably, it is a vocabulary whose expressions are ultimately
defined in terms of externally observable behavioral responses
and stimulation.

We avoid introducing constructs which we do not find
necessary for the computational formalization of the original
definitions of Behavior Analysis, thus upholding its values as
much as possible. In particular, though agents thus defined
have state, which is necessary for computation, we do not
ascribe usual mental qualities to them (e.g., beliefs, intentions,
rationality). Behavior Analysis rejects these usual explanations
of behavior, and puts in their place a different set of concepts,
focused on the properties of externally observable events – that
is to say, behavioral responses and stimulation. In this way, we
differentiate our architecture from most others, which draw
inspiration from different branches of psychology, specially
Cognitive Psychology [11].

We have implemented our architecture in the form of a
simulator, with which a number of experiments can be done
using a “virtual organism”. In this article the focus is on the
architecture, hence we do not investigate the implementation.
Nevertheless, it is worth noting that both the agent archi-
tecture’s implementation and overall simulator in which it is
used, as well as the actual input files for the various examples
presented, are all available for download.4

This text is organized as follows. Section II reviews the
existing work more directly related to our approach. There
aren’t many such works, however, partly because Behaviorism
has largely fallen out of favor within psychology. Hence, a
defense of the behaviorist perspective itself is required, which
is provided in Section III. There, we argue that a behaviorist
point of view can be, in fact, an interesting research direction
for autonomous agent technology, specially in light of certain
current trends. Section IV presents the main characteristics
of the Behaviorist Agent Architecture itself. This constitutes
the main technical contribution of this article. Section V, in
turn, illustrates the use of the architecture through concrete
case studies, thereby showing its practical application. Finally,
Section VI concludes.

4This is part of the Formally Guided Simulator (FGS) project.
Sources, input files and executables for all of this work, including
the agent architecture, can be found at the project’s main repository:
http://github.com/paulosalem/FGS.

II. RELATED WORK

Computational models for Behavior Analysis are scarce in
the literature, and none of the existing ones gives an unified
account of its several aspects, which we classify as the follow-
ing: (i) stimulus conditioning; (ii) respondent behavior (i.e.,
reflexes); (iii) operant behavior; (iv) drives; and (v) emotions.
The approaches that do exist, such as the work of Touretzky
and Saksida [12] (whose agents are called skinnerbots), focus
mostly on algorithmic aspects of operant conditioning, a form
of learning by reinforcement. Similarly, Gaudiano and Phone
[13] propose a particular version of operant conditioning using
neural networks intended specifically to allow robots to avoid
obstacles. Important as these results may be, they are not
sufficient as an architectural basis, which requires a more
extensive and structural specification of what constitutes an
agent. It must be extensive because there is great dependency
among the several behavioral phenomena, and to represent one
it is often necessary to represent another. In particular, operant
conditioning itself depends on other aspects of the agent, such
as drives and emotions. It must also be structural because it
serves as a fundamental basis for both implementation and
further theoretical development. Therefore, its elements must
be organized in such a way that they can be easily identified,
analyzed, related, changed and extended – that is to say, highly
structured.

There exists a program called Sniffy, the virtual rat which
aims at providing an interactive simulation of a rat for the
purpose of teaching classical and operant conditioning [14].
However, neither the underlying computational model nor the
actual source code are provided, so one cannot understand
precisely how the simulation works. It seems, though, that
much of it is hard-coded for very specific tasks, since, for
example, possible actions and stimuli are all fixed, as are
also the experiments that can be conducted. Therefore, despite
being a program, Sniffy does not provide an actual computa-
tional account of behavioral phenomena, but merely a tool for
teaching known concepts in an interactive manner [15].

Though the Behavior Analysis perspective to agent mod-
eling is uncommon, some specific ideas concerning learning
by reinforcement, originated on this behaviorist literature,
have been widely employed in Artificial Intelligence [16]. In
particular, Q-learning theory [17] seeks to abstract the notion
that an action’s value may change over time according to
experience, similarly to the operants of Behavior Analysis.
However, Q-learning formulation assumes a particular calcu-
lation strategy when seeking the optimal action, which is not
necessarily employed by agents (e.g., for efficiency reasons,
or other idiosyncrasies, agents might not perform the kind
of optimization postulated by Q-learning). Furthermore, it is
not directed towards obtaining some particular stimulus (i.e.,
utility is calculated over states, not over stimuli). In any case,
specific reinforcement learning techniques and algorithms can
be complementary to our proposed architecture, since they can
be used as refinements of operant behavior and thus integrate
with the overall agent.

III. THE CASE FOR A BEHAVIORIST POINT OF VIEW

Behaviorist psychology was a strong and influential school
of thought mostly during the first half of the XXth century.
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Since then, however, its reach has faded considerably, giving
place to other approaches, specially Cognitive Psychology
[11]. Indeed, it is from this latter movement that cognitive
agent architectures take inspiration. Hence, one may ask why
research in autonomous agents should even consider the be-
haviorist point of view at all.

A first reason to study Behaviorism here is that, for
historical reasons, it had little influence on early computer
scientists. The fundamental ideas of Artificial Intelligence are
related to the view that human intellect can be understood
as an information processing device, much like a computer
(e.g., Simon [18]). This view finds considerable support on
approaches to psychology that seek to identify and analyze
these internal information processing mechanisms, such as
Cognitive Psychology and mere folk psychology (as pointed
out by Bratman [1]).

Hence, much of the developments from behavioral psychol-
ogy are either misunderstood or forgotten, which is of course
intellectually undesirable. For instance, the well-known text of
[16] reduces the behaviorist view of agency to simple reflexive
agents, whose actions are elicited by stimulation according to
very direct relationships. Wooldridge [19] seems to share a
similar opinion. While reflexes are part of Behaviorism, they
are merely one component of a much wider framework. This
confusion is particularly vexing since the idea of reinforcement
learning, widely used in Artificial Intelligence, comes directly
from the work of behaviorists such as Skinner. 5 Moreover,
other aspects of Behaviorism, such as the modeling of drives
(e.g., thirst) and emotions (e.g., anger) in terms of action and
stimuli, are mostly forgotten. It should be clear, therefore,
that a better understanding of Behaviorism in the context
of autonomous agents is desirable at least to bring some
intellectual order to its legacy.

A more practical and recent reason to adopt a behaviorist-
oriented outlook can be found in the Internet and related
technologies. As the world becomes more interconnected by
networks, devices and applications, it becomes increasingly
relevant to model the agents therein. How should that be
done? A natural approach would be to use the quantifiable
information available about them, which most often can be
reduced to two classes: the actions that an agent performs
and the stimuli they receive. In this context, actions are things
like link clicks, access websites and applications, make phone
calls, send messages, and so on. Stimuli, in turn, are interface
elements, menu options, automated messages, actions by other
agents, and so on. It is therefore convenient to have an agent
architecture designed from the ground up to make the most of
these quantifiable interactions, and not so much of what goes
on within the agent’s "mind" – that is to say, a behaviorist
agent architecture.

This is not to say that one can describe an agent completely
in behaviorist terms. Indeed, higher cognitive functions (e.g.,
logical reasoning) are probably beyond the scope of such a
model. However, because it is so difficult to infer more detailed
cognitive information about an agent based solely on such
simple observations (e.g., clicks, messages, etc), these higher
functions become a much harder goal to attain.

5More precisely, from the notion of operant behavior, which we explain
later.

Beyond the practical realm, one can also find academic
motivations in areas that increasingly reject the premise that
humans act (mostly) rationally. Economics is a case in point.
Traditionally, economists assume that people are rational and
act in their best interest, given the resources available. Finan-
cial crises and panics, though, are often pointed out as evidence
against this orthodox view. In recent years, a number of
economists have been systematically developing an alternative
point of view, aptly named Behavioral Economics [20]. A
behaviorist agent architecture would provide a framework in
which to develop some aspects of this discipline, specially with
respect to quantifiable observations (e.g., purchases, savings).

Academic motivations can also be found in the Multi-Agent
Systems (MAS) community itself. While Artificial Intelligence
is historically concerned with an individual agent’s reasoning,
deduction and so on, MAS have widened the applications of
the agent concept. In a MAS setting, by definition one is
concerned not only with the isolated agent, but also with how
it interacts with other agents through some environment. It is
very natural, then, to seek agency theories that can leverage
this more externalized view, which, again, is something that
Behaviorism can provide. In fact, we have applied this insight
in the development both of a framework for the representation
of environments [21] and of a technique for the verification of
MAS [22].

Finally, behaviorist notions are also of interest to the purely
theoretical aspects of autonomous agents research, indepen-
dently of any application or use in other areas. Tradition-
ally, most developments in such research concern the inner
workings of agents, how it reasons and decides what to do.
When external aspects are considered, they relate mostly to
how agents communicate among themselves. A behaviorist
outlook brings a different perspective. It asks what kinds of
concepts and phenomena can be formulated and investigated
by looking at what is outside the agent, in its interaction with
the surrounding environment. What are the possibilities and
limits of such a view? What can and cannot be described
in this manner? What sort of algorithms can leverage such
modeling? These are questions that arise naturally from such
a different perspective, and however applicable they are, they
are interesting in themselves, for they help to shed light in the
very core of what it means to be an autonomous agent.

The agent architecture presented in this text is a step in
rectifying these issues. By providing a general blueprint of
what a computational behaviorist agent can look like, along
with some concrete examples, we clarify and bring under
a coherent whole some of the possibilities offered by the
behaviorist point of view.

IV. AGENT ARCHITECTURE

The hallmark of Behaviorism is the description of complex
behavior in terms of elements external to the organism (i.e.,
environmental stimulation and observable actions). However,
an agent architecture, by definition, must provide the internal
structure of the class of agents it represents. Therefore, a
behaviorist agent architecture must provide the internal struc-
ture of agents so that, once executed, these agents behave
in accordance with behaviorist principles. Whereas Behavior
Analysis is concerned with inferring laws from the observation
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of mechanisms (i.e., actual organisms), the development of a
corresponding agent architecture is concerned with inferring
mechanisms from those laws. That is to say, it is the attempt
to make the reverse path, from the generalizations back to
mechanisms that fit those generalizations.

This does not mean that such an architecture is meant to
describe the internals of actual organisms. Rather, it should
be seen merely as a technical device to generate behavior that
comply with certain behaviorist principles. To achieve this, the
architecture defines a number of elements to compute these
behaviors. Figure 1 depicts these elements and the relations
between them. In what follows we present each one, in a way
that emphasizes their computational characteristics and their
roles in the overall architecture.

A. Basic Assumptions

Organisms are assumed to be constantly seeking pleasure
and avoiding pain. This search is the basis for most of the
organism’s behavioral responses. And while at first it might
seem a rather simple motivation, it turns out that it can be used
in order to describe a number of interesting phenomena. This
can be achieved computationally by defining and manipulating
an utility function, which is used in various ways, as described
in the next sections.

Time is assumed to flow in discrete steps. At each moment,
the organism: (i) Receives the current stimulation from the
environment; (ii) process the received stimulation; and (iii)
defines which behavioral responses are being performed.

B. General Responding Characteristics

Organisms influence their environment by producing be-
havioral responses. Each such response is an instance of a
class of behavior. In Behavior Analysis, two such classes
are defined, namely, respondent (also known as reflexive) and
operant behavior. But before describing what is unique to
each, it is necessary to establish what elements of behavior
are general and thus common to all such classes.

First, it is useful to define a set of actions which are
not, in principle, part of any behavior class. These actions
represent basic capabilities of organisms (such as the ability of,
say, moving one’s arm). More complex behavior can then be
defined using these basic actions. The following points should
be considered when defining actions:

• Some actions may conflict, so that they cannot be
performed simultaneously. This allows the modeling
of behaviors that use the same physical resources. For
example, a dog may bark or eat, but not both.

• Some actions can only be used in specific behavior
classes. For example, salivation can only be produced
by a reflex.

Given all the possible behaviors of an organism, at any
given moment it is necessary to determine which among them
to perform. This behavior selection problem must be addressed
by providing:

• Conditions that determine whether isolated behaviors
can be performed, disregarding their relation to other
behaviors.

• Conflict resolution operations, which determine which
behavior to perform when two or more conflict. Such
conflicts may arise because, as we have just seen,
actions themselves may conflict.

Once behaviors have been selected and conflicts have been
solved, it is then necessary to schedule a behavioral response
for emission. This scheduling is necessary because certain
behaviors may require time to pass before they really happen.
This models the fact that organisms, owing to their biological
constitution, do not respond immediately, but always within a
certain delay of whatever event that justifies the response.

C. Respondent Behavior

Respondent behavior (also known as reflexes or reflexive
behavior) is the simplest kind of behavior that an organism
possess. A reflex is, essentially, a reliable causal relation
between a stimulus and an action. That is, the presence of
the stimulus triggers, with high probability, the emission of
the action.

Reflexes are innate, so organisms can neither gain nor lose
them. Nonetheless, reflexes can be adjusted. This means that
the way in which they are performed can change. A reflex that
initially produces an intense action, may produce a less intense
one after being elicited several times. Each particular reflex
may have its own specific adjustment functions that define how
the properties of the associated responses should change.

D. Learning

In Behavior Analysis, learning has two main realizations.
The first, stimulus conditioning (better known as classical
conditioning), relates the perceived stimuli to each other in
order to understand how the surrounding environment works
if left to itself. The second, operant behavior, relates the
actions of the organism to the effects that they may have in
the environment. For computational purposes, however, a third
mechanism is required as well, that of spontaneous actions.
Each of these topics are explored below.

1) Stimulus Conditioning: Stimuli whose utilities are in-
herently pleasant or unpleasant are called primary. Stimuli
that are not primary gain their utility through association to
primary stimuli. In general, this process is known as stimulus
conditioning. The stimulus that has its utility modified is called
a conditioned stimulus, and the other is called an unconditioned
stimulus.

As a learning process, stimulus conditioning has two fun-
damental operations:

• The conditioning operation takes two consecutive
stimuli, and relates the first to the second.

• The unconditioning operation takes an existing con-
ditioning between two stimuli and weakens it if the
second stimulus was not perceived after a perception
of the first one. Eventually, if this weakening repeats
many times, the conditioning is deleted.

The effect of having a stimulus s1 related to another s2 is
that the utility of s1 will be calculated as a function of that of
s2. Thus, an organism can learn how one stimulus somehow
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Figure 1. Overview of the Behaviorist Agent Architecture.

causes or precedes another – and unlearn this once such a
relation no longer holds.

Computationally, the relation between stimuli can be rep-
resented as a graph, in which vertices are stimuli and directed
arcs indicate that one stimulus lead to another. By transitivity,
indirect relations between stimuli are also defined. Such an
structure can be seen as a type of semantic network [23]
specialized for behaviorist phenomena.

2) Operant Behavior: Organisms seek pleasure and avoid
pain in an ever changing world. The consequences of their
actions change constantly, in such a way that what used to
be an applicable behavior may no longer be appropriate, and
useless actions may become interesting. Learning is, therefore,
a necessary virtue. In Behavior Analysis, operant behavior is
the kind of behavior that accounts for this.

Because the consequences that organisms seek are always
reinforcing, operants are also known as contingencies of rein-
forcement. However, by no means reinforcing stimuli are the
only consequences that matter. It is equally important to know
actions that lead to aversive stimuli in order to avoid them.

The main computational elements of operant behavior are
the following:

• The operant entity, which records how an action,
under certain environmental stimulation, may lead to
a consequent stimulus.

• Operations for the creation, update and extinction of
operants. Creation takes place whenever a stimulus is
observed to happen after an action. Update happens
whenever this observation happens again (thereby
strengthening the link between them) or the action is
actually not followed again by the stimulus (thereby
weakening their relation). Finally, extinction takes
place when the organism ceases to link an action to a
stimulus after a number of updates.

• An operant utility function. That is to say, given an
operant, this utility function determines the expected
stimulus utility to be achieved by emitting the operant.
Since one operant may set the antecedents of another,
such an operant utility must take into account all
possible sequential composition of operants.

• Emission conditions for operants.

3) Spontaneous Actions: An operant may be created when
an action is executed and it is observed that a stimulus happens
after it, suggesting therefore a causal relation between the
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action and the stimulus. So in the future, should the organism
desire the stimulus, it can try to perform the learned operant.
But a problem remains: what justified the emission of an action
in the first place, before the causal relation was discovered?
Clearly, some mechanism to produce unjustified actions is nec-
essary, since otherwise an ignorant organism would never learn
any operant behavior. We call this mechanism the spontaneous
action emission.

A way to provide such a mechanism is by associating a
probability of spontaneous emission to each available action.
So while selecting behaviors, the agent should also use these
probabilities to randomly decide whether any action is to be
emitted spontaneously. Note that this can be seen as a way to
model curiosity.

In Behavior Analysis, these spontaneous actions are merely
assumed to exist. It is assumed that the rat or the pigeon will
act somehow, and then one may setup appropriate rewards or
punishments for these actions. However, if one is concerned
with the implementation of the agents, it is necessary to
provide an explicit computational mechanism to account for
these initial actions.

E. Behavior Regulation

Behavior, either learned or innate, is made more sophisti-
cated by taking in account certain regulators. These modify the
standard behavior of an organism in order to model influences
that are, so to speak, orthogonal. This can be achieved in two
manners:

• Response regulators. They modify the behavioral re-
sponses directly.

• Utility regulators. They modify the utilities of stimuli,
thereby indirectly changing the way in which operant
behavior is emitted.

In the framework proposed here, drives and emotions
provide such behavior regulators. In what follows we examine
their particularities.

1) Drives: In order to stay alive, organisms constantly
consume environmental resources. For instance, water, food,
air, and so on. Clearly, the utility of these resources must vary
over time. An animal that has just drank a lot of water most
likely won’t be thirsty. On the other hand, an animal that has
not drank anything for a day or two will do anything for water.

The mechanisms that control these variations are called
drives. A drive can be thought of as an appetite for a particular
stimulus. The longer one stays without this stimulus, the
stronger the appetite for it will be. Conversely, the more one
has of the stimulus, the less one will want it. This is modeled
by specifying two functions:

• A satiation operation, which takes the current im-
portance of the drive and reduces it, if the organism
perceives the desired stimulus.

• A deprivation operation, which takes the current im-
portance of the drive and increases it, if the organism
has not perceived the desired stimulus for some time.

There can be many types of function that fits these criteria
(e.g., linear, quadratic, exponential).

2) Emotions: Emotions are usually thought of as subjective
and private events. Still, one can often guess what a person is
feeling by watching his or her behavior. Aggressiveness, for
instance, usually indicates a state of anger.

From a behaviorist point of view, though, private events
are only relevant to the extent that they produce observable
behavior. So aggressiveness is not just a consequence of anger
in a behaviorist theory; rather, it is taken to be anger itself.

In the present work, an emotion is defined as a temporary
modification in operant behavior that is not explained by the
organism’s drives. The purpose of emotions is to fine-tune the
organism’s behavior to match the needs of a given situation.
“Pure” operant behavior would only record the relations among
actions and stimuli. However, the fact that sometimes actions
must be, for example, specially vigorous (e.g., when fighting an
opponent), would not be captured. “Pure” stimuli conditioning
would be incapable of modifying the utility of primary rein-
forcers. And that might be exactly what is required sometimes,
in order to explain certain kinds of behavior (e.g., depression).

Similarly to what we have seen for drives, this fine-tunning
is achieved by providing special regulators. However, differ-
ently from what we did for drives, emotions are not defined
in a very general manner. They encompass any temporary
behavioral modification, and therefore we cannot provide a
single mechanism to account for all possible emotions. Instead,
here we define three representative emotions, namely:

• Depression. A reduction in the utility of all stimuli.

• Anger. An increase in the utility of all stimuli that
signal pain in another organism (e.g., the sight of
blood).

• Frustration. An increase in the probability of emitting
an action which is not associated neither with a reflex
nor with an operant. Frustration is an attempt to learn
more about an environment that has not responded
properly using the previously available behavior.

Other emotions can be defined in a similar manner.

For each emotion, two operations must be provided:

• A start operation, which activates the emotion. Since
each emotion is unique, the use of this operation is
also particular to each emotion.

• A stop operation, which deactivates the emotion. Each
emotion, once activated, lasts for a fixed duration, so
this operation should be called whenever this duration
expires.

F. A Coherent Whole

Adaptation and learning experiences are rather interesting
in themselves. However, much of the strength of such a be-
haviorist architecture comes from their combined effect, since
these several experiences influence each other. For instance,
an agent may know how to get food (through learning), but
because it has eaten too much already, it has no interest in
doing so (an adaptation to having eaten). This brings unity to
these experiences, as they affect the agent as a whole.
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V. EXAMPLES

Let us now present some illustrative examples of models
that have been constructed using the proposed architecture.
We explore one example at some length, and then summarize
a number of other case studies. We do not have the space
for detailed developments here. However, full inputs (and
corresponding simulation outputs) are provided in [9], where
these examples are described in detail.

A. Behavior Elimination

It is often the case that one wishes to eliminate some
operant behavior. An obvious way to do it is to punish the agent
when it performs such an operant. But punishment has its own
undesirable consequences, such as the emotional influence that
it brings.

Interestingly, there is an alternate way of eliminating op-
erants, by using reinforcement instead. This approach consists
in reinforcing some other behavior which: (i) is something de-
sirable; and (ii) is in conflict with the operant to be eliminated
(i.e., the agent cannot perform both at the same time). By this
method, one both avoids the problems with punishment and
creates a new and valuable behavior.

As an example, let us consider a child who often mis-
behaves by beating her dog. She does so because she finds
the resulting dog’s scream amusing. This child, moreover,
sometimes do caress the dog, albeit rarely, when she gets tired
of hearing the dog’s scream.

Clearly, one cannot beat and caress the dog at the same
time, since these actions depend on the same mechanism (i.e.,
the child’s hand). So to eliminate the behavior of beating the
dog, we reinforce the action of caressing. If the reinforcement
is more pleasant to the child than the dog’s scream, then the
behavior is successfully changed.

We can use our agent architecture to model both agents.
Each agent is an instance of the architecture supplied with de-
tailed parameters. For our present illustration purposes, though,
it suffices to note some of the key parameters employed. The
child is parametrized with the following elements:

• Stimuli. We assume that this child enjoys receiving
candy, as well as hearing the dog’s scream. But for the
technique to work, we assume that the child actually
prefers the candy.

• Actions. The child may either beat or caress the dog,
and these are conflicting actions

• Operant. The child already knows that when she beats
the dog, it will scream.

• Drive. The child periodically gets tired of hearing the
dog’s scream. This is modeled as a drive.

The dog, in turn, is modeled as follows:

• Stimuli. Both of the relevant stimuli (i.e., punch and
caress) for the dog are primary, but one is unpleasant,
whereas the other is pleasant.

• Actions. The dog can scream in pain. Moreover, to
make the example more complex, the dog also barks
spontaneously.

• Reflex. The dog has a reflex to model the fact that it
can complain when it receives a punch.

By simulating this two agent system, and providing the
appropriate rewards when the opportunity arises (i.e., when
the child caress the dog), we successfully modeled the phe-
nomenon. This experiment puts in evidence the interaction
between drives, stimulation and operant behavior in order to
model a behavioral phenomenon. This shows the value of the
integrating the different aspects of an organism’s behavior in a
coherent whole. The example also shows that agents can relate
to each other by transforming the actions of one in stimuli to
the other.

B. Further Examples

The architecture can model various situations. These are
some further examples that we built and simulated:

• Worker: operant chaining. The consequences of an
operant can set the conditions for another operant.
When this happens, we say that operant chaining takes
place. This notion can explain why an agent acts even
though no immediate reward is given. To show this,
we model a worker, whose several actions depend on
each other in order to lead to what he really desires,
such as food. So waking up, going to work, getting
payed and buying provisions are all part of one operant
chain.

• Factory: rearranging a social network. An assembly
line is modeled in such a way that any agent can
occupy any position in the production chain. However,
some workers cannot work close to one another,
because they get distracted (e.g., by chatting). Here,
our objective is to find a configuration of the social
network that allows the assembly line to work. In this
network, nodes are particular tasks on the assembly
line and relations indicate the dependency between
these tasks.

• School children: from chaos to order. Children receive
homework from a teacher, but are distracted by a
number of environmental factors. For example, they
might prefer to watch TV or annoy other children.
One can then study appropriate manners to organize
the overall system so that the children act as desired.

• Online social network: spreading a message. In an
online social network, users can register themselves
and send messages to each other through a website.
In particular, they can forward advertisement received
from the website. The operator of the network, then,
can reward users with points for doing that. The
objective is to check how the advertisement spreads
in the network.

VI. CONCLUSION

Owing to its focus on the organism as a whole (i.e.,
not on isolated details of particular internal structures), Be-
havior Analysis incidentally provides a useful basis for a
computational agent architecture. That is to say, a framework
with which to define agents capable of receiving stimuli and
performing actions in a rather general manner.
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In this article a number of architectural elements were
defined to model the notions found in Behavior Analysis.
Some of them come directly from the behaviorist literature
(e.g., operant behavior), whereas others were introduced to
allow a proper computational model (e.g., utility functions,
spontaneous actions). Their architectural role is important:
particular implementations of the architecture may vary widely
how each element is actually implemented. For instance,
operant behavior can be implemented using many different
existing algorithms for reinforcement learning. The architec-
ture provides a general blueprint, which can be changed and
extended in many ways. Our particular implementation, used
to run the examples, is but one possibility.

The examples given illustrate how several mechanisms
interact in order to produce the agent’s final behavior. Stimulus
conditioning changes the relation between stimuli, and there-
fore changes the way in which reflexes and operant behavior
happen. Drives can alter the utility of stimuli temporarily,
which affects behavior as well. Operants can be composed
in chains in order to accomplish more complex tasks. Other
similar interactions exist, which shows that a behaviorist
architecture, such as the one we propose, can model interesting
agent behaviors.

The choice of examples was guided by a desire to stay
close to the original behaviorist literature (hence, animals
and situations from daily life were employed). They show
that the architecture can account for important psychological
phenomena, thereby validating it. It would be interesting, now,
to see how applicable the architecture is in areas of more
current interest, such as Behavioral Economics and software
applications.

Finally, though coherent and expressive, the architecture
developed here is not a complete formalization of Behavior
Analysis. A number of interesting notions were not accounted
for, and therefore are left as research possibilities. Of these,
behavior shaping and schedules of reinforcement are perhaps
the most important ones. Behavior shaping consists in teaching
a behavior by rewarding successive approximations of it. It
therefore requires the introduction of some notion of behav-
ior approximation, which we did not attempt. Schedules of
reinforcement, in turn, concern how to deliver reinforcement
in order to change the rate of responses over time [24]. The
difficulty in this case is in finding a computational formulation
that correctly models the empirically observed phenomena.
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