JZed-Gen: Towards Pragmatical Generation of Software from
Z Specifications

Alvaro Miyazawa!, Paulo Salem da Silva, Ana C. V. de Melo!

lUniversity of Sdo Paulo
Department of Computer Science
Séo Paulo — Brazil

{al varohm salem acvn} @ ne. usp. br

Abstract. Formal specifications are useful to describe what systemssajpe

posed to do without defining how they do it. And owing to theiciseeformula-

tions, they can be used as a first system model and analyzesygtematic way.
Despite these benefits, formal specifications are not widedyg un practice.
One of the problems is related to time to market: transfogrénch specifica-
tions into actual implementations is usually laboriousialving lengthy man-
ual transformations. To address this issue, this work prissieoth an automatic
technique to partially transform Z formal specificationsidava programs and
a tool — JZed-Gen — to support it. Our method focuses on tlgetastructures
of the specification and generates an application skeletoohwtan be easily
complemented by programmers, either manually or autoralticThe imple-

mentation preserves the specification invariants and kdeptace back to the
actual specification parts, allowing runtime specificatiaolations to be de-
tected. In this paper we provide an overview of the techniqueibbustrate it

with a simple example.

1. Introduction

Formal specifications are abstract mathematical desmniptnf systems one usually in-
tends to implement. They are abstract because they do natilakeghe final implemen-
tation completely. Rather, they contain only what is rel¢étarassess the correctness of
certain properties of interest. And they are mathematieaabse they can be manipulated
and analyzed through mathematical methods.

However, formal specifications should also, eventuallyinlg@emented as work-
ing software. To this end, itis necessary to find ways to fransthe abstract descriptions
into actual programs. There are several approaches te#uh,tackling the problem from
a particular point of view or for a particular formal methdeh. general, however, these
approaches are mostly based on formal refinements. Thheispanual step-by-step ap-
plication of rules in order to put more detail in the speciima without violating any
of the properties defined in previous steps. Once sufficietdildhas been inserted in
this way, it becomes possible to map the specification intamgramming language, thus
generating correct code by construction.

The authors have received financial support from the Coadéditional de Desenvolvimento Cientifico
e Tecnologico (CNPq), proc. 551038/2007-1, as well as freenGoordenacgédo de Aperfeicoamento de
Pessoal de Nivel Superior (CAPES) for the production of tiesgnt work.

While highly desirable, such correctness frequently dersandre thought from
the person doing the refinements (i.e., to chose the apptepules to apply) than pro-
gramming. Moreover, it assumes that one can develop theewhygdlementation using
refinements, though sometimes this might not be the case lfecpuse the development
team includes people not familiar with formal methods).

In this work, we take a different perspective. Instead aohigyto answer how one
can generate correct code by construction, we simply irgegst how formal specifica-
tions can help developers gain more productivity, undaditey and trust on their soft-
ware. More precisely, we propose a pragmatical way to cospecifications made with a
subset of the Z formal method [ISO/IEC 2002] into actual J®ta Microsystems 2007]
programs. We provide JZed, a software framework that imptesthe larger blocks of Z
specifications, as well as a code generation tool, JZed4Batmaps particular specifica-
tions into elements of this framework. Hence, we depart fo@ditional formal methods
to embrace the ideas of Model-Driven Engineering (MDE) 8t 2006].

JZed-Gen generates an application structure (i.e., ctanclasses) which is then
supposed to be complemented with custom code by programBesgles the productiv-
ity gains, this structure brings two main technical advgega First, it enforces invariant
checks to make sure that the custom code inserted by thegonoggr does not violate any
invariants. Second, it is built in such a way that runtimengésée.g., errors) can be traced
back to the particular specification elements (e.g., aqddr schema) associated with it.
As we shall see, these characteristics render the final adtlaoth more robust and more
understandable. JZed-Gen, however, does not convemattecthema predicates to Java.
This is supposed to be done either manually or by another tool

Currently, we assume the specification to be composed ontatef and operation
schemas, and schema calculus expressions. Axiomaticrpptesg for instance, are not
currently supported, though we intend to add support favibreover, the types used in
a specification are supposed to be simple (e.g., given Setsypound types support is
currently limited to sets and partial functions.

In this paper we present the main elements of our approath,angpecial focus
on the code generation tool. The text is organized as foll@estion 2 contextualizes our
work. Section 3 presents the foundations of our approacleapidins the characteristics
of the generated code. We assume that the reader is alraadiafavith Z and object-
oriented programming. As a means of illustration, Sectiajivés a simple application
example, which, in particular, shows part of the generabedce code. Finally, Section 5
reflects about what has been achieved and what remains taee do

2. Related Work

Both the Formal Methods and the Software Engineering comimegnihave re-
search relevant to the present work, which is placed in amrgattion be-
tween them. Within Formal Methods, refinement approaches.,(eZRC
[Cavalcanti and Woodcock 1999], the B-Method [Abrial 1996ransformation to Mi-
randa language [Abdallah et al. 2000]), specification |aggs for programs (e.g., JML
[Burdy et al. 2003], Jass [Bartetzko et al. 2001]) and softwaremanipulating formal
specifications (e.g., CZT [Malik and Utting 2005]) are sphgiaelated to our work.
As to Software Engineering at large, our work has much shitylavith MDE efforts

Schemas are transformed
to our Java framework

Code
generation tool

N e

Java

p
Abstract
framework

. - =» Z specification
requirements ‘

N) - J
R W
\ Events in the software can be traced A concrete application
N back to parts of the specification employs the framework’s
~ classes as its foundation
~
p Predicates are translated by the ~ -~ . A
\ : — L
Application specific programmer in predefined methods = Concrete
requirements e e ——m——m e ————————— application

AN /’ Custom executable code is _

inserted by the programmer

Figure 1. The relationship between the several development artifacts. Shaded
blocks show the ones which our method provides. Solid lines i ndicate steps
that can be accomplished automatically, while dashed ones s how what has to be
done manually.

[Schmidt 2006] , which aim at generating code from abstramt@s. The Model-Driven
Architecture (MDA) [Miller and Mukerji 2003] is a popular oarete MDE methodology.

In its purposes and methods, the JCSP framework [Lea 199Bgiprbject that
mostly resembles ours. JCSP provides a Java implementdtiba GSP process algebra
[Hoare 1978]. Using it, one can quickly create software fl08P specifications (e.g., as
used in [Oliveira 2005, Freitas and Cavalcanti 2006]). Fynave believe that the capa-
bility of relating the implementation back to its specificatprovided by our work can be
specially useful when implementing tools that manipulateiaderlying theory (e.g., our
agent behavior specification [Salem and de Melo 2007]).

3. Approach Overview

Our approach focuses on quickly transforming a specifindtito executable code. Us-
ing JZed, a Java framework that captures the semantics dbsesof the Z notation,
JZed-Gen creates a basic application structure from afggaimn, which then has to be
complemented by the programmer with logical assertionshasitler own custom source
code. The framework enforces several invariant checkdyaattbecomes harder to in-
troduce logical errors in the final program. Moreover, ibaadows events (e.g., errors) in
the program to be traced back to specification parts, whiohbeauseful to analyze and
improve both the code and the specification itself. Figuregiats the relations among
the several artifacts involved.

The JZed framework defines abstract classes for elements\Wwhgn transform-
ing a specification into a concrete application, JZed-Gemaxes each specification el-
ement and creates a new class that extends some base clagsrfahe framework,
Owing to this inheritance relation, these new classes atlevead with appropriate se-
mantics. The programmer, then, can insert his/her own cogeedefined methods of the

LCurrently, we support mainly state and operation schenmass@me schema calculus connectives. The
same principles, however, apply to the other elements fouBdand we aim at implementing them as well.

concrete classes.

The framework’s design tries to balance adherence to thefs@ion with the
possibility of code customization. To this end, it defineéhlevels of implementation,
which are present as abstract methods to be implementedoyate subclasses:

e Specification requirementsn this level, there should be a direct implementation
of what is found in the specification.

e User requirementsin this level, the user might create invariants that are meet d
fined in the specification. This is provided in order to allav the creation of
invariants as needed during programming.

e Custom codeln this level, the user should provide any code he/she wishieis
code substitutes, to a large extent, the formal refinembatsaould be necessary
in traditional methods. That is, we rely on the programmiaterpretation of the
specification and allow him/her to implement it directly.

We shall now examine the structure of the main classes, iexptav invariants,
pre- and post-conditions are enforced, show how custom caaée inserted and define
how the system as a whole is maintained in runtime.

3.1. Schemas and Schema Calculus

Schemas are useful to represent system states and opg@at@rihese states. The frame-
work defines two classes to represent these concepits:

e Schena. Represents a Z state schema,;

e Oper ati on. Represents a Z operation. Actually, in Z these operatioagust
schemas that follow a special convention. However, sineg éne so important in
a specification and have some special semantics associdtethem, we chose
to map them as a special subclass ofSoéema class.

A state schema is transformed into a Java class that exteed®&henma class
with fields corresponding to the state variables declar¢ddrschema. These fields must
be annotated with the annotatiéWariableDeclaratiornprovided by the framework, and
their types are given by a mapping function constructed fadyasic mapping provided by
the framework and complemented by both the tool and the Tikeruser must implement
manually the constructor of the class, and the methodserklat the verification of the
state invariant.

An operation schema is transformed into a subclass dplez at i on class with
fields corresponding to the input, output and state varg&aldlbe annotation of these fields,
as well as their types, are inserted in the same fashion asdtate schema. Usually, an
operation imports one or more delta schemas. These cannstatied in terms of schema
inclusion, but we treat them as they are traditionally ipteted, namely, as state change.
Moreover, besides the class constructor, methods relatétetverification of pre- and
post-conditions must be implemented.

It is important to be able to create more complex schemas &ionpler ones,
and this is achieved through schema import and connectefsed by the schema cal-
culus. These complex schemas could be transformed tyivigllunfolding them into
simpler schemas, through the definition of schema incluaimh the connective of the

schema calculus. However, this approach would present plamtion to our goal of
tracing the code back to the specification. The transfoonatirategy adopted retains
the structure of the complex schema by explicitly importsafpemas and implementing
the schema calculus connectives as classes that connstih@xinstances of state and
operation schemas.

3.2. State Invariants, Pre-conditions and Post-conditios

The Schema class defines abstract methods to check invariants that haldf and
concrete subclasses must provide their implementatione ddncrete subclasses of
Oper at i on, on the other hand, must implement pre- and post-conditioaghods.
Schema calculus formulae, in turn, don’t require any furtihmplementation, as they only
call the relevant methods of the schemas being composed.

3.3. Custom Code Execution

For each concret8chema subclass, the programmer may write custom code that shall
be executed whenever the system state is updated and thaashevariants hold. As

to concreteOper at i on subclasses, the programmer may implement code that shall be
executed whenever the operation is invoked an its pre-tiondiare true.

3.4. System State Update

Clearly, the task of constantly checking invariants, pred post-conditions should be
carried out by the framework, not the programmer. To achiileise a special class called
Speci fi cati on holds all the states and operations in a specification. it grevides
a method to check all state schemas under it. Operation$yeoather hand, only need
updates individually, as they are invoked.

4. Example

Let us explore a concrete application example now. We skell®w to use our tech-
nology to implement the birthday book specification, whistaicanonical specification
in Z literature (e.g., used in [Malik and Utting 2005, Woo®B9, originally presented in
[Spivey 1992]). However, owing to the the limited space, wk enly show some parts
explicitly.

The basic element that is defined in that specification iBthtedayBookschema,
which is responsible for storing names of people and thepeetive birthdays.

BirthdayBook== [known: P NAME; birthday: NAME + DATE | known= dom birthday]

There are a number of operations that can be performed ogestdte schema. Let us
consider only one, th&ddBirthdayoperation, which adds a name and its birthday to a
BirthdayBookschema.
AddBirthday == [ABirthdayBook namé& : NAME date? : DATE |
namé& ¢ knownA birthday = birthdayu {namé — date’}]
This operation actually needs to be complemented usinghstloalculus in order to
account for the case in which it fails (i.e., in case the nasredready stored in the birth-

day book). To this end, there are other two operation schenasely, Successand
AlreadyKnown With them, we may compose the followifAddBirthdayoperation.

RAddBirthday== (AddBirthdayA SuccessV AlreadyKnown

There are, of course, several possible implementatiorthi®specification. Let us now
consider one of them.

B JZed Gen (I:\bbook.xml) B JzedGen (I:\bbook.xml) = <]
Fie Help Fie Help
Speification || TYPe iransiation | Code generation Specication | Type translation |} Code generation
2 type Javatype Destination Folder |I:\Birthday book app [—
MAME iString . -
REFORT String Application Mame | BirthdayBookapp
DATE GregorianCalendar Root Package com.example
G

Figure 2. Two screenshots of JZed-Gen. The first shows the tab le where the user
must define how to convert primitive types into Java classes. The second shows
the application parameters, such as its name.

4.1. Generating Java Code

To perform the code generation we employ the JZed-Gen tapit, bne may provide
the specification files (written idTeX Z markup), the transformation for given types into
Java classes and the details of the final application (&sgiame and the folder to put its
code). Figure 2 shows two screenshots of the tool.

Once the transformation data is configured properly, one pmags thegener-
ate button to create the code. For scheBighdayBook a corresponding class named
Bi r t hdayBook is generated. Its code can be seen in Figure 3.

As we explained above, this class extends a standard bas® tblat provides
the fundamental mechanisms for a schema implementatiorwaich defines abstract
methods to be implemented in concrete extensions. Fomiostaonsider the method
checkSpeci ficationl nvari ants(). The generation tool creates it empty, but
the programmer is supposed to code it. So, in this case, dgggnmer inserts an asser-
tion, which corresponds to the invariant of the schema. Tathodexecut e() is also
generated empty and might be filled in order to accomplishesonstom task, which is
not defined in the specification. In the code excerpt, for ganwe see that this method
has already been implemented by a programmer and it simpiysghe current known
names in the birthday book.

The operatiordddBirthday as well as all other schemas, are also transformed into
classes. Then, the composition of the fiRslddBirthdayoperation, which is a schema
calculus expression, is given by the code shown in Figure 4.

4.2. Accountability and Safety

Since every schema in the specification has a corresponidisg io the implementation,
it is easy to trace problems to the exact part of the speddicdhat caused them. For ex-
ample, if the operatioddBirthdayis implemented incorrectly, its post-conditions will
be violated in its first execution, which shall stop the pesgwith an exception showing
that there is a problem in that particular class. Then, ong chack the original speci-
fication, as well as the corresponding source code, in omldistover what caused the
error. Thus, the code is accountable, since it can be refatésispecification. Moreover,
if somehow theBi rt hdayBook class is modified incorrectly, its invariants might be

public class BirthdayBook extends Schena {

@\Var i abl eDecl ar ati on
prot ected HashSet <Stri ng> known;

@\Vari abl eDecl ar ati on
protected HashMap<String, G egorianCal endar> birthday;

publ i c BirthdayBook(HashSet <Stri ng> known,
HashMap<String, G egorianCal endar> birthday) ({
super (" Bi rt hdayBook"); this.known = known; this.birthday = birthday;

}

@verride
protected void checkSpecificationlnvariants()
throws | nvariantViolation {
Assert.isTrue(birthday. keySet (). equal s(known));

}

@verride
protected void execute() {
System out. println("Names_currently_stored =" +
known.toString())
} /1 ... other methods ...

}

Figure 3. Part of the code automatically generated for the sc hema BirthdayBook

Operation RAddBi rt hday = new SchemaCal cOR(
new SchemaCal cAND(aAddBi rt hday, aSuccess),
aAl r eadyKnown) ;

Figure 4. The transformation into Java code of the schema cal culus expression
that defines the RAddBirthdayoperation.

violated, and this would cause the program to stop as welhcElethe code is also safe,
since it can detect invariant violations and prevent exenuh inconsistent states.

5. Conclusion

In this paper we presented a model-driven approach to thelaverall structure of Java
applications from a subset of Z formal specifications. Weiadgthat our method brings
productivity to the development process and understahtyata the generated code, in
the sense that it can be related to the underlying formalifspetcon. We do not address
more detailed concerns, such as refinements that could bedpp the specification

prior to code generation. But we do recognize the value of sefthements and regard
them as complementary to our work.

References

Abdallah, A. E., Barros, A., Barros, J. B., and Bowen, J. P. (2000pDeriv-
ing correct prototypes from formal Z specifications. TechhiReport SBU-

CISM-00-27, South Bank University, SCISM, London, UK. Avaiabat
http://citeseer.ist.psu.edu/abdallahOOderiving.html

Abrial, J. (1996).The B-Book: Assigning Programs to Meanin@ambridge University
Press.

Bartetzko, D., Fischer, C., Moller, M., and Wehrheim, H. (2D0lass - Java with asser-
tions. Inln Workshop on Runtime Verification, 2001. held in conjwnrctvith the 13th
Conference on Computer Aided Verification, CAV'01.

Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, Geino, K., and Poll,
E. (2003). An overview of JML tools and applications. In Arte and Fokkink,
W., editors,Eighth International Workshop on Formal Methods for IndistCritical
Systems (FMICS '03yolume 80 ofElectronic Notes in Theoretical Computer Science
pages 73-89. Elsevier.

Cavalcanti, A. L. C. and Woodcock, J. C. P. (1999). ZRC—A Refinemeluulies for Z.
Formal Aspects of Computing0(3):267—289.

Freitas, A. F. and Cavalcanti, A. L. C. (2006). Automatic Ttatien from Circus to
Java. In Misra, J., Nipkow, T., and Sekerinski, E., editéid, 2006: Formal Methods
volume 4085 ot_ecture Notes in Computer Scienpages 115 — 130. Springer-Verlag.

Hoare, C. A. R. (1978). Communicating sequential process€&ommun. ACM
21(8):666—-677.

ISO/IEC (2002). Information technology — Z formal specifioa notation — syntax, type
system and semantics. Technical Report ISO/IEC 13568:E)QERO/IEC.

Lea, D. (1999). Concurrent Programming in Java: Design Principles
and Patterns Addison-Wesley Longman Publishing Co., Inc. See also
http://lwww.cs.kent.ac.uk/projects/ofa/jcsp/.

Malik, P. and Utting, M. (2005). CZT: A framework for Z toolsn Proceedings of the
4th International Conference of B and Z Users (ZB20@apges 65—-84.

Miller, J. and Mukerji, J. (2003). MDA guide version 1.0.lechnical Report omg/2003-
06-01, The Object Management Group. See also http://wwg.org/mda/.

Oliveira, M. V. M. (2005). Formal Derivation of State-Rich Reactive Programs using
Circus PhD thesis, University of York.

Salem, P. and de Melo, A. C. V. (2007). A simulation-orientedhfalization for a psy-
chological theory. In Dwyer, M. B. and Lopes, A., editdf8,SE 2007, Held as Part of
ETAPS 2007, Proceedingsmlume 4422 of_ecture Notes in Computer Scienpages
42-56. Springer-Verlag.

Schmidt, D. C. (2006). Model-driven engineeriri@omputer

Spivey, J. M. (1992).The Z notation: a reference manuaPrentice Hall International
(UK) Ltd., Hertfordshire, UK, UK.

Sun Microsystems (2007). Java technology. http://javacam/.

Wood, K. R. (1993). A practical approach to software engimgeausing Z and the refine-
ment calculusSIGSOFT Softw. Eng. Notel3(5):79-88.

