
JZed-Gen: Towards Pragmatical Generation of Software from
Z Specifications

Alvaro Miyazawa1, Paulo Salem da Silva1, Ana C. V. de Melo1

1University of São Paulo
Department of Computer Science

São Paulo – Brazil

{alvarohm, salem, acvm}@ime.usp.br

Abstract. Formal specifications are useful to describe what systems aresup-
posed to do without defining how they do it. And owing to their precise formula-
tions, they can be used as a first system model and analyzed in asystematic way.
Despite these benefits, formal specifications are not widely used in practice.
One of the problems is related to time to market: transforming such specifica-
tions into actual implementations is usually laborious, involving lengthy man-
ual transformations. To address this issue, this work presents both an automatic
technique to partially transform Z formal specifications into Java programs and
a tool – JZed-Gen – to support it. Our method focuses on the larger structures
of the specification and generates an application skeleton which can be easily
complemented by programmers, either manually or automatically. The imple-
mentation preserves the specification invariants and keepsthe trace back to the
actual specification parts, allowing runtime specification violations to be de-
tected. In this paper we provide an overview of the technique and illustrate it
with a simple example.

1. Introduction

Formal specifications are abstract mathematical descriptions of systems one usually in-
tends to implement. They are abstract because they do not describe the final implemen-
tation completely. Rather, they contain only what is relevant to assess the correctness of
certain properties of interest. And they are mathematical because they can be manipulated
and analyzed through mathematical methods.

However, formal specifications should also, eventually, beimplemented as work-
ing software. To this end, it is necessary to find ways to transform the abstract descriptions
into actual programs. There are several approaches to this,each tackling the problem from
a particular point of view or for a particular formal method.In general, however, these
approaches are mostly based on formal refinements. That is, the manual step-by-step ap-
plication of rules in order to put more detail in the specification without violating any
of the properties defined in previous steps. Once sufficient detail has been inserted in
this way, it becomes possible to map the specification into a programming language, thus
generating correct code by construction.

The authors have received financial support from the Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPq), proc. 551038/2007-1, as well as from the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior (CAPES) for the production of the present work.



While highly desirable, such correctness frequently demands more thought from
the person doing the refinements (i.e., to chose the appropriate rules to apply) than pro-
gramming. Moreover, it assumes that one can develop the whole implementation using
refinements, though sometimes this might not be the case (e.g., because the development
team includes people not familiar with formal methods).

In this work, we take a different perspective. Instead of trying to answer how one
can generate correct code by construction, we simply investigate how formal specifica-
tions can help developers gain more productivity, understanding and trust on their soft-
ware. More precisely, we propose a pragmatical way to convert specifications made with a
subset of the Z formal method [ISO/IEC 2002] into actual Java[Sun Microsystems 2007]
programs. We provide JZed, a software framework that implements the larger blocks of Z
specifications, as well as a code generation tool, JZed-Gen,that maps particular specifica-
tions into elements of this framework. Hence, we depart fromtraditional formal methods
to embrace the ideas of Model-Driven Engineering (MDE) [Schmidt 2006].

JZed-Gen generates an application structure (i.e., concrete classes) which is then
supposed to be complemented with custom code by programmers. Besides the productiv-
ity gains, this structure brings two main technical advantages. First, it enforces invariant
checks to make sure that the custom code inserted by the programmer does not violate any
invariants. Second, it is built in such a way that runtime events (e.g., errors) can be traced
back to the particular specification elements (e.g., a particular schema) associated with it.
As we shall see, these characteristics render the final software both more robust and more
understandable. JZed-Gen, however, does not convert internal schema predicates to Java.
This is supposed to be done either manually or by another tool.

Currently, we assume the specification to be composed only of state and operation
schemas, and schema calculus expressions. Axiomatic paragraphs, for instance, are not
currently supported, though we intend to add support for it.Moreover, the types used in
a specification are supposed to be simple (e.g., given sets).Compound types support is
currently limited to sets and partial functions.

In this paper we present the main elements of our approach, with a special focus
on the code generation tool. The text is organized as follows. Section 2 contextualizes our
work. Section 3 presents the foundations of our approach andexplains the characteristics
of the generated code. We assume that the reader is already familiar with Z and object-
oriented programming. As a means of illustration, Section 4gives a simple application
example, which, in particular, shows part of the generated source code. Finally, Section 5
reflects about what has been achieved and what remains to be done.

2. Related Work

Both the Formal Methods and the Software Engineering communities have re-
search relevant to the present work, which is placed in an intersection be-
tween them. Within Formal Methods, refinement approaches (e.g., ZRC
[Cavalcanti and Woodcock 1999], the B-Method [Abrial 1996], atransformation to Mi-
randa language [Abdallah et al. 2000]), specification languages for programs (e.g., JML
[Burdy et al. 2003], Jass [Bartetzko et al. 2001]) and softwarefor manipulating formal
specifications (e.g., CZT [Malik and Utting 2005]) are specially related to our work.
As to Software Engineering at large, our work has much similarity with MDE efforts



Figure 1. The relationship between the several development artifacts. Shaded
blocks show the ones which our method provides. Solid lines i ndicate steps
that can be accomplished automatically, while dashed ones s how what has to be
done manually.

[Schmidt 2006] , which aim at generating code from abstract models. The Model-Driven
Architecture (MDA) [Miller and Mukerji 2003] is a popular concrete MDE methodology.

In its purposes and methods, the JCSP framework [Lea 1999] is the project that
mostly resembles ours. JCSP provides a Java implementation of the CSP process algebra
[Hoare 1978]. Using it, one can quickly create software fromCSP specifications (e.g., as
used in [Oliveira 2005, Freitas and Cavalcanti 2006]). Finally, we believe that the capa-
bility of relating the implementation back to its specification provided by our work can be
specially useful when implementing tools that manipulate an underlying theory (e.g., our
agent behavior specification [Salem and de Melo 2007]).

3. Approach Overview

Our approach focuses on quickly transforming a specification into executable code. Us-
ing JZed, a Java framework that captures the semantics of a subset of the Z notation,
JZed-Gen creates a basic application structure from a specification, which then has to be
complemented by the programmer with logical assertions andhis/her own custom source
code. The framework enforces several invariant checks, so that it becomes harder to in-
troduce logical errors in the final program. Moreover, it also allows events (e.g., errors) in
the program to be traced back to specification parts, which can be useful to analyze and
improve both the code and the specification itself. Figure 1 depicts the relations among
the several artifacts involved.

The JZed framework defines abstract classes for elements of Z. When transform-
ing a specification into a concrete application, JZed-Gen examines each specification el-
ement and creates a new class that extends some base class found in the framework.1

Owing to this inheritance relation, these new classes are endowed with appropriate se-
mantics. The programmer, then, can insert his/her own code in predefined methods of the

1Currently, we support mainly state and operation schemas, and some schema calculus connectives. The
same principles, however, apply to the other elements foundin Z, and we aim at implementing them as well.



concrete classes.

The framework’s design tries to balance adherence to the specification with the
possibility of code customization. To this end, it defines three levels of implementation,
which are present as abstract methods to be implemented by concrete subclasses:

• Specification requirements.In this level, there should be a direct implementation
of what is found in the specification.

• User requirements.In this level, the user might create invariants that are not de-
fined in the specification. This is provided in order to allow for the creation of
invariants as needed during programming.

• Custom code.In this level, the user should provide any code he/she wishes. This
code substitutes, to a large extent, the formal refinements that would be necessary
in traditional methods. That is, we rely on the programmer’sinterpretation of the
specification and allow him/her to implement it directly.

We shall now examine the structure of the main classes, explain how invariants,
pre- and post-conditions are enforced, show how custom codecan be inserted and define
how the system as a whole is maintained in runtime.

3.1. Schemas and Schema Calculus

Schemas are useful to represent system states and operations over these states. The frame-
work defines two classes to represent these concepts:

• Schema. Represents a Z state schema;
• Operation. Represents a Z operation. Actually, in Z these operations are just

schemas that follow a special convention. However, since they are so important in
a specification and have some special semantics associated with them, we chose
to map them as a special subclass of theSchema class.

A state schema is transformed into a Java class that extends theSchema class
with fields corresponding to the state variables declared inthe schema. These fields must
be annotated with the annotationAVariableDeclarationprovided by the framework, and
their types are given by a mapping function constructed froma basic mapping provided by
the framework and complemented by both the tool and the user.The user must implement
manually the constructor of the class, and the methods related to the verification of the
state invariant.

An operation schema is transformed into a subclass of theOperation class with
fields corresponding to the input, output and state variables. The annotation of these fields,
as well as their types, are inserted in the same fashion as fora state schema. Usually, an
operation imports one or more delta schemas. These can be translated in terms of schema
inclusion, but we treat them as they are traditionally interpreted, namely, as state change.
Moreover, besides the class constructor, methods related to the verification of pre- and
post-conditions must be implemented.

It is important to be able to create more complex schemas fromsimpler ones,
and this is achieved through schema import and connectives defined by the schema cal-
culus. These complex schemas could be transformed trivially by unfolding them into
simpler schemas, through the definition of schema inclusionand the connective of the



schema calculus. However, this approach would present a complication to our goal of
tracing the code back to the specification. The transformation strategy adopted retains
the structure of the complex schema by explicitly importingschemas and implementing
the schema calculus connectives as classes that connect existing instances of state and
operation schemas.

3.2. State Invariants, Pre-conditions and Post-conditions
The Schema class defines abstract methods to check invariants that musthold, and
concrete subclasses must provide their implementation. The concrete subclasses of
Operation, on the other hand, must implement pre- and post-conditionsmethods.
Schema calculus formulae, in turn, don’t require any further implementation, as they only
call the relevant methods of the schemas being composed.

3.3. Custom Code Execution
For each concreteSchema subclass, the programmer may write custom code that shall
be executed whenever the system state is updated and the schema’s invariants hold. As
to concreteOperation subclasses, the programmer may implement code that shall be
executed whenever the operation is invoked an its pre-conditions are true.

3.4. System State Update
Clearly, the task of constantly checking invariants, pre- and post-conditions should be
carried out by the framework, not the programmer. To achievethis, a special class called
Specification holds all the states and operations in a specification. It then provides
a method to check all state schemas under it. Operations, on the other hand, only need
updates individually, as they are invoked.

4. Example
Let us explore a concrete application example now. We shall see how to use our tech-
nology to implement the birthday book specification, which is a canonical specification
in Z literature (e.g., used in [Malik and Utting 2005, Wood 1993]; originally presented in
[Spivey 1992]). However, owing to the the limited space, we will only show some parts
explicitly.

The basic element that is defined in that specification is theBirthdayBookschema,
which is responsible for storing names of people and their respective birthdays.

BirthdayBook== [known: P NAME; birthday : NAME 7→ DATE | known= dom birthday]

There are a number of operations that can be performed over this state schema. Let us
consider only one, theAddBirthdayoperation, which adds a name and its birthday to a
BirthdayBookschema.

AddBirthday == [∆BirthdayBook; name? : NAME; date? : DATE |

name? /∈ known∧ birthday′ = birthday∪ {name? 7→ date?}]

This operation actually needs to be complemented using schema calculus in order to
account for the case in which it fails (i.e., in case the name is already stored in the birth-
day book). To this end, there are other two operation schemas, namely,Successand
AlreadyKnown. With them, we may compose the followingRAddBirthdayoperation.

RAddBirthday== (AddBirthday∧ Success) ∨ AlreadyKnown

There are, of course, several possible implementations forthis specification. Let us now
consider one of them.



Figure 2. Two screenshots of JZed-Gen. The first shows the tab le where the user
must define how to convert primitive types into Java classes. The second shows
the application parameters, such as its name.

4.1. Generating Java Code

To perform the code generation we employ the JZed-Gen tool. In it, one may provide
the specification files (written in LATEX Z markup), the transformation for given types into
Java classes and the details of the final application (e.g., its name and the folder to put its
code). Figure 2 shows two screenshots of the tool.

Once the transformation data is configured properly, one maypress thegener-
ate button to create the code. For schemaBirthdayBook, a corresponding class named
BirthdayBook is generated. Its code can be seen in Figure 3.

As we explained above, this class extends a standard base class that provides
the fundamental mechanisms for a schema implementation andwhich defines abstract
methods to be implemented in concrete extensions. For instance, consider the method
checkSpecificationInvariants(). The generation tool creates it empty, but
the programmer is supposed to code it. So, in this case, the programmer inserts an asser-
tion, which corresponds to the invariant of the schema. The methodexecute() is also
generated empty and might be filled in order to accomplish some custom task, which is
not defined in the specification. In the code excerpt, for example, we see that this method
has already been implemented by a programmer and it simply prints the current known
names in the birthday book.

The operationAddBirthday, as well as all other schemas, are also transformed into
classes. Then, the composition of the finalRAddBirthdayoperation, which is a schema
calculus expression, is given by the code shown in Figure 4.

4.2. Accountability and Safety

Since every schema in the specification has a corresponding class in the implementation,
it is easy to trace problems to the exact part of the specification that caused them. For ex-
ample, if the operationAddBirthdayis implemented incorrectly, its post-conditions will
be violated in its first execution, which shall stop the program with an exception showing
that there is a problem in that particular class. Then, one may check the original speci-
fication, as well as the corresponding source code, in order to discover what caused the
error. Thus, the code is accountable, since it can be relatedto its specification. Moreover,
if somehow theBirthdayBook class is modified incorrectly, its invariants might be



public class BirthdayBook extends Schema {

@AVariableDeclaration
protected HashSet<String> known;

@AVariableDeclaration
protected HashMap<String, GregorianCalendar> birthday;

public BirthdayBook(HashSet<String> known,
HashMap<String, GregorianCalendar> birthday) {

super("BirthdayBook"); this.known = known; this.birthday = birthday;
}

@Override
protected void checkSpecificationInvariants()

throws InvariantViolation {
Assert.isTrue(birthday.keySet().equals(known));

}

@Override
protected void execute() {
System.out.println("Names currently stored =" +

known.toString())
} // ... other methods ...

}

Figure 3. Part of the code automatically generated for the sc hema BirthdayBook.

Operation RAddBirthday = new SchemaCalcOR(
new SchemaCalcAND(aAddBirthday, aSuccess),
aAlreadyKnown);

Figure 4. The transformation into Java code of the schema cal culus expression
that defines the RAddBirthdayoperation.

violated, and this would cause the program to stop as well. Hence, the code is also safe,
since it can detect invariant violations and prevent execution in inconsistent states.

5. Conclusion

In this paper we presented a model-driven approach to build the overall structure of Java
applications from a subset of Z formal specifications. We argued that our method brings
productivity to the development process and understandability to the generated code, in
the sense that it can be related to the underlying formal specification. We do not address
more detailed concerns, such as refinements that could be applied to the specification
prior to code generation. But we do recognize the value of suchrefinements and regard
them as complementary to our work.

References

Abdallah, A. E., Barros, A., Barros, J. B., and Bowen, J. P. (2000). Deriv-
ing correct prototypes from formal Z specifications. Technical Report SBU-



CISM-00-27, South Bank University, SCISM, London, UK. Available at
http://citeseer.ist.psu.edu/abdallah00deriving.html.

Abrial, J. (1996).The B-Book: Assigning Programs to Meanings. Cambridge University
Press.

Bartetzko, D., Fischer, C., Moller, M., and Wehrheim, H. (2001). Jass - Java with asser-
tions. InIn Workshop on Runtime Verification, 2001. held in conjunction with the 13th
Conference on Computer Aided Verification, CAV’01.

Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K., and Poll,
E. (2003). An overview of JML tools and applications. In Arts, T. and Fokkink,
W., editors,Eighth International Workshop on Formal Methods for Industrial Critical
Systems (FMICS ’03), volume 80 ofElectronic Notes in Theoretical Computer Science,
pages 73–89. Elsevier.

Cavalcanti, A. L. C. and Woodcock, J. C. P. (1999). ZRC—A Refinement Calculus for Z.
Formal Aspects of Computing, 10(3):267—289.

Freitas, A. F. and Cavalcanti, A. L. C. (2006). Automatic Translation from Circus to
Java. In Misra, J., Nipkow, T., and Sekerinski, E., editors,FM 2006: Formal Methods,
volume 4085 ofLecture Notes in Computer Science, pages 115 – 130. Springer-Verlag.

Hoare, C. A. R. (1978). Communicating sequential processes.Commun. ACM,
21(8):666–677.

ISO/IEC (2002). Information technology – Z formal specification notation – syntax, type
system and semantics. Technical Report ISO/IEC 13568:2002(E), ISO/IEC.

Lea, D. (1999). Concurrent Programming in Java: Design Principles
and Patterns. Addison-Wesley Longman Publishing Co., Inc. See also
http://www.cs.kent.ac.uk/projects/ofa/jcsp/.

Malik, P. and Utting, M. (2005). CZT: A framework for Z tools. In Proceedings of the
4th International Conference of B and Z Users (ZB2005), pages 65–84.

Miller, J. and Mukerji, J. (2003). MDA guide version 1.0.1. Technical Report omg/2003-
06-01, The Object Management Group. See also http://www.omg.org/mda/.

Oliveira, M. V. M. (2005). Formal Derivation of State-Rich Reactive Programs using
Circus. PhD thesis, University of York.

Salem, P. and de Melo, A. C. V. (2007). A simulation-oriented formalization for a psy-
chological theory. In Dwyer, M. B. and Lopes, A., editors,FASE 2007, Held as Part of
ETAPS 2007, Proceedings, volume 4422 ofLecture Notes in Computer Science, pages
42–56. Springer-Verlag.

Schmidt, D. C. (2006). Model-driven engineering.Computer.

Spivey, J. M. (1992).The Z notation: a reference manual. Prentice Hall International
(UK) Ltd., Hertfordshire, UK, UK.

Sun Microsystems (2007). Java technology. http://java.sun.com/.

Wood, K. R. (1993). A practical approach to software engineering using Z and the refine-
ment calculus.SIGSOFT Softw. Eng. Notes, 18(5):79–88.


