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Abstract

During a program’s execution, state information can be collected and stored in the form of program traces.
With such traces, one can analyze dynamic properties of the program. In this paper, we consider the
problem of merging multiple traces from the same program in order to compose an approximate temporal
model of its behavior. With such a model one can perform model checking based on both linear- and
branching-time logics. To this end, we formally define what we mean by program trace and present some
algorithms to perform trace merging. We show that each of these algorithms yield a different kind of
temporal model, appropriate for different kinds of analyses. Our method is motivated by the possibility
of analyzing simulations in a way that has not been done so far, and thus is developed with the needs of
such a domain in mind. To demonstrate the practical feasibility of the proposed theoretical approach, we
explain how to actually perform model checking of our temporal models using the NuSMV tool. Moreover,
we provide proof-of-concept Java implementations of the proposed trace merging algorithms, which output
NuSMV specifications. We also describe a simple case study using this implementation.

Keywords: model checking, simulation, runtime verification

1 Introduction

The execution of a program can be seen as a sequence of discrete states. By collecting
information about such states, one can assemble a trace of the execution, which can
then be analyzed in order to reveal properties of the underlying program. Clearly,
the kind of information that must be collected to build such traces varies according
to the kind of analysis one wishes to perform. By the same token, the representation
of traces depends on the analysis technique to be used.

Currently, there are several approaches designed to analyze single program traces,
and there are good reasons for this. For instance, by devising methods for the
analysis of isolated program traces, one is in better position to create methods
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that operate on-the-fly (i.e., during the execution of the program) and, hence, that
can provide runtime analysis procedures. Moreover, linear-time logics (e.g., Linear
Temporal Logic (LTL) [17]) are suitable for the analysis of temporal properties of
such traces (i.e., because a trace can be seen as a time line), and this allows for a
kind of dynamic model checking.

However, if the objective is not on-the-fly verification, but simply an analysis
of a program through its runtime behavior, it is reasonable to try to collect and
combine as much information as possible about it. This implies, in particular, that
one should try to combine several traces in order to gain a better understanding
of the underlying program. This kind of idea is pursued in a number of works for
various specific purposes.

In this paper, we present a new method for building such a trace combination and
show how to perform model checking on it. The motivation that guides our efforts
and differentiate much of our ideas is the possibility of using this kind of technique
to analyze computer-aided simulations. Typically, when performing simulations to
study some phenomenon, one collects several statistics, but discards the simulations’
traces. We aim, therefore, at using this information that is usually disregarded. This,
we believe, can help one to study the behavior of such simulations in a new way.

It is important to note that the technique presented here might not actually be
appropriate in other contexts, such as when one wishes formal guarantees concerning
the presence or absence of software defects. As it will become clear, our method
depends on some assumptions and can only generate approximate models, which
might elicit wrong responses from a model checker (i.e., false positives and false
negatives). Nevertheless, in many situations it is better to have such an approximate
understanding of a system rather than no understanding at all. Moreover, the quality
of our approximations can be easily improved by adding more and longer traces.

Our approach consists in the following steps:

(i) collect several traces from the same program;

(ii) merge these traces into what we call a state-space;

(iii) convert the state-space into the input language of some model checker;

(iv) perform model checking.

The main worry here concerns the appropriate definition of trace and strate-
gies for merging them. Each strategy has its own strengths and weaknesses, and
are formulated according to the kind of problems we expect to find when analyz-
ing simulations. We provide both a conceptual account as well as a concrete Java
[18] implementation of the merging algorithms. As a proof-of-concept, the imple-
mentation produces a suitable input for the the NuSMV [6] model checker, but the
technique can be easily ported to other model checkers with similar expressivity.

We assume that the program traces are available and, thus, we do not provide
a method for collecting them. In this respect, we just define a trace file format
that our proof-of-concept tool can read. This way, we do not restrict the possible
applications of our method to any particular kind of program.

The text is organized as follows. Section 2 contextualizes our work. Section 3
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establishes the formal foundations upon which the merging algorithms are defined.
In Section 4, these algorithms are given. Then, in Section 5 we show how to actually
perform model checking in the merged traces. Section 6, in turn, presents some
illustrative experiments employing a simple economic simulation. Finally, Section 7
reflects about what was achieved and discusses what remains to be done.

Our Java implementation, as well as examples of input and output files, can be
downloaded from the following URL:

http://www.ime.usp.br/˜salem/papers/trace_merger.zip

2 Related Work

The analysis of isolated traces has received considerable attention recently. Such
analysis either explore the traces explicitly (e.g., by employing some sort of linear-
time logic model checking) or use traces implicitly (e.g., by instrumenting a program
to perform invariant checks). On the first group, we may cite Geilen [11] as well
as Finkbeiner and Sipma [10]. Both propose automatic methods to check, dur-
ing runtime, if a given program violates an LTL specification. As far as we know,
branching-time logics (e.g., Computational Tree Logic (CTL) [7]), which are also
common in model checking, are not used in this context. On the second group,
Design by Contract [15] approaches, such as JASS [2] and JML [4], are most signifi-
cant. In such approaches, the programmer may explicitly state program invariants,
as well as pre- and post-conditions of methods. Hence, while no explicit use of traces
is made, there is the implicit assumption that every state of every trace must respect
the given specification.

Concerning the analysis of multiple traces, there are a number of works that con-
sider the problem of generating specifications from them. Boigelot and Godefroid
[3] show a method to create approximate Finite State Machines from a program’s
executions. However, their approximations are different from ours in two important
aspects. First, they assume the existence of correct execution trees, while we employ
only sequences of states (i.e., what we call traces), which is a more restrictive as-
sumption. So, in fact, they assume the existence of a structure similar to the one we
try to create (i.e., directed graphs). Second, the quality of their approximations is
given by the choice of the depth to employ when performing calculations in certain
subtrees, while we give specific algorithms to create approximations and which yield
different kinds of state-spaces.

Ammons et al. [1] present the notion of specification mining, an approach to
discover protocols from execution traces of implementations. It employs code instru-
mentation and learning automata to create automata that approximate the specifi-
cation of communication protocols between programs and Application Programming
Interfaces (API). Their technique, though, is geared towards finding probable be-
havior, and as a result infrequent observations might be disregarded. Furthermore,
they perform no simplifications in the traces themselves (i.e., without considering
the frequency of the observed transitions over all traces), whereas each of our al-
gorithms perform a specific kind of simplification, in order to provide state-spaces

P.S. da Silva, A.C.V. de Melo / Electronic Notes in Theoretical Computer Science 240 (2009) 97–112 99

http://www.ime.usp.br/~salem/papers/trace_merger.zip


suitable for distinct purposes.
With similar purposes, Lo et al. [13] investigate how to mine temporal logic

formulae, Ernst [8] presents techniques to extract program invariants, and Ernst et
al. [9] introduce Daikon, a system to extract such invariants. While our present
work does not aim at discovering such information from traces, it will be clear that
the resulting state-spaces from our algorithms can be used to such an end.

Model checking is traditionally employed as an exhaustive verification method,
which demonstrates the presence or absence of some property on a formally speci-
fied system. However, this also results in efficiency problems, which motivates the
development of approximate model checking algorithms, in which only a part of the
possible execution paths are explored, such as the work of Cho et al. [5]. Our work is
similar to this approach, but whereas their approximations are derived from formal
analysis of the system, ours relies on the collected traces at runtime.

3 Formal Modelling

Let us establish a formal description of what we mean by trace and trace merging.
With that, we shall be able to define precisely our algorithms and explain how model
checking is performed.

The most basic definition we need is that of a state property.

Definition 3.1 A state property is a Boolean variable.

State properties denote the program characteristics we are interested in at indi-
vidual program states. For example, questions such as “is the variable x currently
positive?”. They differ, thus, from general program properties, which can assert
propositions about the temporal behavior of the program. In our approach, such
general program properties are expressed as statements of some temporal logic dur-
ing model checking (e.g., CTL) and, hence, do not need to be formally defined here.

When we are analyzing a program, we typically want to monitor many state
properties. Consequently, the state of the program can be defined simply as a
valuation for them.

Definition 3.2 Let P be a set of state properties. Then a state is a partial function
s : P → {0, 1}.

We may now define a trace as a sequence of such states.

Definition 3.3 Let P be a set of state properties and S be a set of states over
such properties. Then a trace is a sequence (s1, s2, . . . , sn), where si ∈ S , for every
1 ≤ i ≤ n. We denote the length n of a trace t as |t|. Moreover, we say that s1 is
the initial state and that the ith position in the trace is the ith instant.

Finally, we may define the result of trace merging, which we call a state-space.
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It is, essentially, a directed graph whose vertices are states and in which there is a
special subset of initial states.

Definition 3.4 A state-space is a tuple 〈S ,R,I 〉 where:

• S is a set of states;
• R is a relation over states;
• I is a subset of S , called the initial states.

As we shall see below, the structure of the state-space depends on the kind of
trace merging algorithm employed.

4 Merging Traces

We may now investigate how we can merge several traces in order to produce a state-
space suitable, in particular, for branching-time model checking. In this section we
present three algorithms for this, in descending order of simplicity. They differ
on how much information is preserved from the original traces, which implies that
the state-space generated by the algorithms might satisfy temporal properties that
are not satisfied by a state-space without information loss. This, however, is not
a problem as long as the appropriate merging algorithm is chosen for the desired
verification. State-spaces with less information have the advantage of being more
efficiently verified and might be sufficient in many cases. As one would expect, the
more information is preserved, the larger is the resulting state-space.

Moreover, the merging might introduce new possible traces, owing to the im-
plicit assumptions concerning which states should be considered equal. That is,
when states from different traces are considered equal, they are merged into one,
which connects the traces. This new connection might introduce new sequences of
transitions, composed by parts of the original traces. Clearly, these new possibilities
are only useful if the criterion of state equality is applicable in the problem being
analyzed. Otherwise, the new transitions will be hindrances. Then, as each merging
algorithm has its own notion of state equality, it follows that one should consider
whether any of these notions are actually applicable in the problem to be analyzed.

In what follows we survey some situations in which each algorithm is adequate,
thus motivating their use. For all the algorithms below, we assume that we have a
set S of states over a set P of properties, and a set T of traces. Furthermore, we
define that |S | = n. To help in the presentation, we shall apply each technique to
the example traces given in Figure 1.

4.1 State-Preserving Merger

One may build a state-space that preserves the states of S and employs T only to
define the possible transitions among states. That is, we may ignore the instants
when the transitions took place and only consider the fact that they eventually took
place. This assumes that any given state depends only on the one immediately
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s1 s1 s1

s2 s2 s1

s1 s2 s1

Fig. 1. Three example traces.

s1 s2

Fig. 2. The State-Preserving Merger of the example. Only the two states are preserved, but the several
transitions found are all kept.

before it (i.e., a Markovian assumption). Figure 2 presents the result of applying
this technique to the example traces of Figure 1. Algorithm 1 defines the technique
precisely.

This merging strategy creates a state-space in which there are more transitions
than in the original traces. This implies that, when analyzing it, every possible
transition between states shall be considered, but impossible ones will also be found.
Consider, for instance, the transformation from the traces shown in Figure 1 to the
ones displayed in Figure 2. Besides the original traces, the model in Figure 2 clearly
allows for a sequence of several s2 states, whereas in the original traces we cannot
find a trace with more than two consecutives s2 states. The strategy, therefore,
must be used with this characteristic in mind. It might be useful specially when
checking safety temporal properties over states (e.g., whether the program may reach
an undesirable state), in which it can guarantee the absence of certain traces at the
price of eventually finding false-positives.

This algorithm makes strong assumptions and is limited to a particular set of
verification tasks, which may not be always appropriate. But it has the advantage
of keeping the state-space small. Since |S | = n, the state-space can have at most
n2 transitions, and therefore the space required for its representation is O(n2).

4.2 Time-Preserving Merger

We may relax the Markovian assumption and keep temporal information. But to
do so, we need to introduce the concept of extended states, which capture the idea
that a state has a history.

Definition 4.1 Let s be a state and t ∈ N, with t ≥ 1. Then the pair (s, t) is an
extended state. Moreover, we say that t is an instant.

Definitions for extended trace and extended state-space are analogous to those
given previously. And for the sake of simplicity, we shall omit the extended qualifi-
cation whenever it is clear from context.
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Algorithm 1 State-Preserving Merger.
Input: A set S of possible states and a set T of traces over S.
Output: A state-space.

Let R be an empty binary relation
Let I be an empty set
foreach t ∈ T do

Let s1 be the initial state of t

I ← I ∪ {s1}

foreach (si, si+1) subtrace of t do
R ← R ∪ {(si, si+1)}

end
end
Return 〈S,R, I〉

(s2, 1) (s2, 2) (s1, 3)

(s1, 1) (s1, 2)

Fig. 3. The Time-Preserving Merger of the example. Notice that this state-space is composed of extended
states. In instants 1 and 2, both s1 and s2 states are possible. But in instant 3, only s1 is possible, as all
traces converge to it.

Given these definitions, the algorithm can be described as follows. For each
instant, we consider all states that appear in some trace and define a set of extended
states for that particular instant. Then we connect the several elements in these
extended states sets according to the transitions present in the traces. Figure 3
presents the result of applying this technique to the example of Figure 1. Algorithm
2 defines the method precisely.

Time-preserving merger employs all the available information in the traces.
Hence, it is useful when one cannot afford many simplifications. For example, if we
wish to check the presence of a particular subtrace with more than two states, this
strategy will be required, since the others necessarily disregard some possible tran-
sitions in their simplifications. Such long subtraces, in turn, might be particularly
needed when the time (measured in number of states) a program remains in some
state is of importance (e.g., real time systems, computer simulations). Consider, for
instance, the requirement that the program represented by the traces of Figure 1
must not contain a subtrace composed of three or more s2 states (e.g., (s1, s2, s2, s2)).
From the figure we can see that no trace violates the requirement and from Figure
2 we can see that the time-preserving strategy will generate a state-space that do
not violate the requirement either. However, the state-preserving strategy we saw

P.S. da Silva, A.C.V. de Melo / Electronic Notes in Theoretical Computer Science 240 (2009) 97–112 103



Algorithm 2 Time-Preserving Merger.
Input: A set S of possible states and a set T of traces over S.
Output: A state-space.

Let S′ be an empty set
Let R be an empty binary relation
Let I be an empty set

foreach t ∈ T do
Let s1 be the initial state of t

S′ ← S′ ∪ {(s1, 1)}
I ← I ∪ {(s1, 1)}

end

Let n be the length of the largest trace in T

for i ← 1 to n − 1 do
foreach t ∈ T do

if |t| ≥ i + 1 then
Let si be the i-th state in t

Let si+1 be the (i + 1)-th state in t

Let x be the tuple (si, i)
Let y be the tuple (si+1, i + 1)

S′ ← S′ ∪ {y}
R ← R ∪ {(x, y)}

end
end

end

Return 〈S′, R, I〉

previously would clearly generate a state-space that violates the requirement, since
it has a loop on state s2.

This algorithm assumes that if the same state of affairs holds in the same instant
in two different traces, then the future from that point on should contain the pos-
sibilities found on both traces. As a result, the generated state-space will allow for
sequences of transitions that are not found in the original traces. Such a state-space
can be useful when we believe that the time at which events happen is important to
determine the subsequent future, because the new transitions that are inferred will
allow us to consider possible behaviors that would not have been found otherwise.

Let us analyze the space required for the state-space produced by this strategy.
Assume that the largest trace has length m. For every instant we have a set of
extended states. In the worst case, all of these sets are of size n (i.e., contain
extended versions of all states in S ). Clearly, then, in the worst case we have mn
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extended states to consider. Moreover, each set of extended states can have, at
most, n2 transitions going out of it. From this it follows that the state-space may
have, at most, (m − 1)n2 transitions. Thus, the size of the representation is about
mn + (m − 1)n2, which is O(mn2).

4.3 Change-Preserving Merger

It is more informative to keep all temporal relations found on the collected traces, but
it can be also rather expensive. An alternative approach is to modify the temporal-
preserving algorithm to discard some extended states, while still maintaining tem-
poral relations among the remaining ones, thus achieving a compromise between
state-preserving and time-preserving methods.

But which extended states should we dismiss? That depends on what kind of
questions we wish to answer with the resulting state-space. A reasonable criterion,
we believe, is to keep only the necessary temporal information to distinguish between
state changes that happen in the traces. So, for example, a trace of the form
(s1, s1, s1, s2, s1) can be compressed into (s1, s2, s1), which preserves the information
that s2 eventually appears. Our method, though, also preserves the original instant
that the change takes place. Figure 4 shows the method applied to the example
of Figure 1. Algorithm 3, which is just a variation of Algorithm 2, describes the
method precisely.

This strategy is particularly suitable to check liveness temporal properties. That
is, if one is interested in discovering whether the program eventually reaches a par-
ticular state from some other state, it is reasonable to exclude sequences of repeated
states between them, which only slows down the search in this case. Furthermore,
if the time that it takes for a change to happen is important, it can also be specified
in a formula to be checked, since the original instants are preserved.

This change-preserving method is of interest only if the traces to be merged
present a significant amount of segments that can be eliminated. The worst case
scenario, however, is even worse than that of time-preserving merging. This happens
because, unlike time-preserving merger, change-preserving can connect extended
states that are not temporally consecutive. Let us outline its worst case complexity.
Again, define m to be the length of the largest trace and let us have m sets of
extended states, each containing the extended states that appear in some particular
instant. Hence, again we shall have mn extended states to consider in the worst
case. Now, however, each set of extended states may connect to all sets that come
after it, except the one that comes immediately after it. Therefore, the total number
of transitions will be, at most,

∑m−2
i=1 (n − 1)2i, which is m2−3m+2

2 (n − 1)2. As a
result, the total worst case space complexity is O(m2n2).

To see this more clearly, consider a set of traces T1 which is a worst-case scenario
to the time-preserving algorithm. Assume, moreover, that the traces in T1 have
no transitions connecting equal states. Therefore, applying the change-preserving
algorithm to T1 will yield the same state-space that applying the time-preserving
one. Now consider another set of traces, T2, crafted with the exact repetitions
that, when eliminated, would connect extended states temporally distant. Then,
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(s2, 1)

(s1, 1) (s2, 2) (s1, 3)

Fig. 4. The Change-Preserving Merger of the example. Compare this with Figure 3.

the result of merging T1 ∪ T2 will yield an even worse state-space, because it will
have transitions that connect both consecutive and not consecutive instants.

5 Performing Model Checking

Once the traces are merged, we have a state-space that can undergo model checking,
using either LTL or CTL. Theoretically, there is not much more to be done. On the
other hand, from a practical stand point, it is still necessary to provide an actual
implementation that performs the model checking. To this end, we simply translate
the state-spaces to the input language of an existing model checker, NuSMV. The
translation specifies a Finite State Machine (FSM) whose states and transitions
are those in our state-space, with the addition of a few new transitions to account
for a technicality. Then, NuSMV can be used directly to investigate the temporal
properties of the FSM.

5.1 Translating to a NuSMV FSM

NuSMV provides a rich specification language, including data types and modules
for specification decomposition. To our purposes, though, only a subset of this
power is needed. The specifications that we are interested in have the following
characteristics:

States Let {s1, s2, . . . , sn} be the states in our state-space. Then they are translated
to NuSMV as the following variable declaration:

state : s1, s2, . . . , sn;

Time Let m be the length of the largest trace used to compose the state-space.
Then time is captured in NuSMV with the following declaration:

time : 1..m;

Initial States Possible initial states and instants are given as a logical disjunction
of expressions that describe each initial state as follows. Let (s, t) be an initial
extended state. Then its logical expression in NuSMV is:

(state = s ∧ time = t)
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Algorithm 3 Change-Preserving Merger.
Input: A set S of possible states and a set T of traces over S.
Output: A state-space.

Let S′ be an empty set
Let R be an empty binary relation
Let I be an empty set
Let P [] be an array that maps traces into extended states

foreach t ∈ T do
Let s1 be the initial state of t

I ← I ∪ {(s1, 1)}
S′ ← S′ ∪ {(s1, 1)}
P [t] ← (s1, 1)

end

Let n be the length of the largest trace in T

for i ← 1 to n − 1 do
foreach t ∈ T do

if |t| ≥ i + 1 then
Let si+1 be the (i + 1)-th state in t

Let sp be the first coordinate of the pair in P [t]

if si+1 �= sp then
Let y be the tuple (si+1, i + 1)
S′ ← S′ ∪ {y}
R ← R ∪ {(P [t], y)}
P [t] ← y

end
end

end
end

Return 〈S′, R, I〉

Transition Transitions are also specified as logical disjunctions of expressions that
describe each individual transition as follows. Let ((s1, t1), (s2, t2)) be a transition
between extended states. Then its logical expression in NuSMV is:

(state = s1 ∧ next(state) = s2 ∧ time = t1 ∧ next(time) = t2)

In all of the above rules, if time is not relevant (e.g., as in state-preserving
merging), it is simply not specified.

The translation is almost straightforward. But because the future is technically
endless, we need to add some transition to states that have no transitions (e.g., those
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which are at the end of the longest traces). We do this by inserting a loop in such
states, which means that when we don’t have data to infer the future, we simply
assume that it’ll remain the same.

Figure 5 present the specification for the example shown in Figure 3.

5.2 Exploring the NuSMV FSM

For the most part, the FSM can be explored as any other NuSMV FSM. That is, by
appending the desired logical specification formulae at the end of the FSM file and
running NuSMV. For example, if we want to check the CTL formula AF (state = s1),
we merely append it to the end of the generated FSM file as:

SPEC AF (state = s1)

However, it is necessary to bear in mind that some states have artificial loops
on them, which we added during the translation in order to make sure every state
has a successor. This decision is mostly harmless, but it’ll imply that care must
be taken when specifying logical formulae that are supposed to be true in every
state of a temporal path, since they will not be evaluated correctly in the states
with these artificial loops. For example, if we want to check the CTL formula
AG(state = s1 → AF (state = s2)), we must also specify a maximum instant to
evaluate the AG connective. So, if our traces have around 200 states, the 100th
instant might be a good threshold and would yield the following specification:

SPEC AG ((state = s1 & time < 100) -> AF (state = s2))

While limiting the verification to a particular number of states might seem a
crude mechanism in general model checking, in our case it is a reasonable approach,
since the traces we have access to are themselves subject to such limitation. So if
we want to cover all available information, it is sufficient to fix such a maximum
instant as the size of the largest trace (e.g., in the above example, 200). And though
it is always desirable to cover all the available information, for efficiency reasons one
might need to give up part of it, thus making this kind of instant limitation useful.

6 Case Study

The approach described above can, of course, be used with any program capable
of being instrumented to generate a trace file. In this section, however, we shall
consider only simulators, which are a particular kind of program that, we believe,
can be greatly benefited by our method. While approaches for computer-aided
simulation vary, some of them (e.g., [16,14]; see also [12]) are based on specifying
the behavior of some system to be studied as an executable program instrumented
in special ways. Currently, the analysis that is performed using such simulations is
based mostly on graphical visualization and compilation of statistics concerning the
value of variables. No method to analyze their temporal behavior through logical
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MODULE main
VAR

state:{s2, s1};
time: 1 .. 3;

INIT
(state = s1 & time = 1)|
(state = s2 & time = 1)

TRANS
(state=s1 & next(state)=s1 & time = 1 & next(time) = 2)|
(state=s1 & next(state)=s2 & time = 1 & next(time) = 2)|
(state=s1 & next(state)=s1 & time = 2 & next(time) = 3)|
(state=s2 & next(state)=s2 & time = 1 & next(time) = 2)|
(state=s1 & next(state)=s1 & time = 3 & next(time) = 3)|
(state=s2 & next(state)=s1 & time = 2 & next(time) = 3)

Fig. 5. The NuSMV specification of the example given in Figure 3.

specifications exists.
Clearly, then, our method can be applied to allow such logical analyses to be

performed, by instrumenting simulators to generate a trace every time the simula-
tion is run. Let us then explore a concrete example of such an application. We
shall consider a simple fictitious model for the economic behavior of nations. Our
aim is to study the relation between some kinds of economic events, such as eco-
nomic depressions. The program is provided together with the merging algorithms’
implementations, which can be downloaded at the URL given in Section 1.

Our model has the following variables of interest: inflation, economic activity
and standard of living. At each simulation step, their values are updated according
to some rules. The simulator simply runs the model several times, collecting traces
and, in the end, producing a trace file that can be read by our trace merger.

We are not interested in a random combination of the model’s variables. Instead,
we choose to focus our resources in particular combinations that have some economic
meaning of interest. In this experiment, we chose to study some types of economic
growth, stagnation and depression. Our states are the following:

• Growth type 1 (g1). The best kind of economic growth, with low inflation and a
good standard of living.

• Growth type 2 (g2). Economic growth with no guarantee of standard of living.
• Depression type 1 (d1). The worst kind of economic depression, with high inflation

and a bad standard of living.
• Depression type 2 (d2). A less severe kind of economic depression.
• Stagnation (stagnation). The absence of either growth or depression.
• Other (other). Other combinations of the model properties which are not of

interest to the experiment.

To invoke the simulator, one must specify the number of traces, the number of
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states per trace and the output file. In our experiment, we did that as follows:

$ java -jar economicmodel.jar 200 100 sim_traces.txt

Once the simulation is finished, the trace merger must be called, with the merging
algorithm to be used, the trace file and the desired NuSMV output file name. We
shall use the time-preserving merger in this experiment, as follows:

$ java -jar tracemerger.jar tp sim_traces.txt sim_model_tp.smv

This gives us a file ready to be read by NuSMV. But we still need to specify the
logical properties that we want to investigate. We choose the following:

• Are depressions or stagnation inevitable? In CTL:

AF (state = d1 ∨ state = d2 ∨ state = stagnation)

• Can depressions be eventually followed by growth? Recall that the last states
in the FSM are looping, so that specifications referring to their future will be
inaccurate. Hence, to specify the desired property in CTL, we must choose a
maximum instant for the depressions to start, so that the future that follows
remains correct. We arbitrarily chose the 50th instant. Notice also that a change-
preserving trace merger would be sufficient to analyze this property. We get the
following CTL proposition:

AG((time < 50 ∧ (state = d1 ∨ state = d2)) → EF (state = g1 ∨ state = g2))

• Is a long continuous sequence of type 2 depressions possible? Since in CTL it is
not possible to have a variable to range over a set of values, we cannot specify the
duration of this sequence as the difference between its last and first instants. But
we can specify sequences by using the fact that CTL provides an operator to refer
to the successor state. To use this, notice also that we need a time-preserving
trace merger, so that both instants and all successor states are preserved. In
CTL, we have something of the following form (the ‘. . .’ indicate that more EX

expressions are coupled):

EF (state = d2 ∧ EX(state = d2 ∧ EX(state = d2 ∧ . . .)))

• Can growth be immediately followed by stagnation? In CTL:

EF ((state = g1 ∨ state = g2) ∧ EX(state = stagnation))

To answer these questions, we open the NuSMV file we have just generated and
append them to it. Then we just run NuSMV with this input. As it turns out,
only the second and the third propositions above are true. But, of course, if the
simulation had being implemented in a different manner, different results could arise.

Furthermore, since the state-space employed is an imperfect approximation of
the actual system, it is necessary to assume that the answers given by the model
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checker might be wrong. Hence, one may wonder how these answers are useful at
all. To address this concern, two things must be understood. First, these uncertain
answers are indeed valuable if more rigorous methods are not available, since they
do reflect the behavior of the system, albeit in an incomplete manner. And, second,
the technique is not supposed to assert infallible propositions, but only to suggest
possible behaviors, given the available data and the suppositions concerning the
simulated system. The user is expected to use such suggestions as guidelines for
further scrutiny, either by providing more and longer traces to our algorithms or by
employing other methods (e.g., writing specific test cases for the detected behavior,
inspecting the source code).

For example, the user might suspect that the first proposition above was actu-
ally true and might chose to investigate it further. To this end, he might run the
simulation again, but recording longer traces in order to be able to detect events
that, he imagines, will only happen in distant futures. He might also manually
examine the simulation’s source code in order to look for possible implementation
errors concerning the variables referred by the proposition.

7 Conclusion

In this work we presented an approach to merge program traces so that one can
perform branching-time model checking on them. We described both abstract al-
gorithms and actual implementations. Our motivation, we stated, is to provide a
way to use traces from simulations for analytical purposes. The case study given
reflects this objective. However, the algorithms are general and can be applied in
arbitrary programs, as long as the required assumptions are met. For instance, one
may use them as a formal complement to software testing, but only as a way to
suggest possible problems.

We highlighted the merging techniques which seem most interesting to us. But
they are not the only ones possible, and perhaps for different problems other man-
ners may be more appropriate. For example, the change-preserving algorithm of
Section 4.3 also preserves the instant that a change takes place, but maybe this
is not necessary for some applications. Furthermore, we purposefully disregarded
techniques in which no merging would take place and every trace would be analyzed
independently, since these would not belong to the core subject of the paper.

The amount and length of traces required to generate representative space-states
can be quite large. This problem must still be addressed, and we believe that one
promising way to deal with it is to selectively discard traces. That is, by having
criteria of trace relevance in relation to some logical property of interest, one may
keep only those traces that are more likely to be useful. Research needs to be done
to find such criteria, but it seems to us that static analysis techniques might be
helpful.

Our method is clearly incomplete, in the sense that it can always be the case
that some important transition was not captured in the traces. It is still necessary,
then, to develop coverage indices to measure how much of the possible traces have
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been in fact analyzed. Again, we think that static analysis might be useful (e.g.,
because we could know a priori that some traces would be impossible, which would
increase our coverage estimation).

Finally, the state-space produced by merging traces can also be useful to other
things besides model checking. As an approximate representation of an underlying
program, it might be interesting to apply machine learning algorithms to it, in order
to extract new information about its behavior. For example, it might be the case
that every time a particular state comes up, another state never appears, but we are
unaware of this relation. A machine learning algorithm could, perhaps, reveal it to
us.
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