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Abstract
Discrete event simulations can be used to analyse natural and
artificial phenomena. To this end, one provides models whose
behaviours are characterized by discrete events in a discrete
timeline. By running such a simulation, one can then ob-
serve its properties. This suggests the possibility of apply-
ing on-the-fly verification procedures during simulations. In
this work we propose a method by which this can be accom-
plished. It consists in modelling the simulation as a a transi-
tion system (implicitly), and the property to be verified as an-
other transition system (explicitly). The latter we call a sim-
ulation purpose and it is used both to verify the success of
the property and to guide the simulation. Algorithmically, this
corresponds to building a synchronous product of these two
transitions systems on-the-fly and using it to operate a simu-
lator. The precise nature of simulation purposes, as well as the
corresponding verification algorithm, are largely determined
by methodological considerations important for simulations.

1. INTRODUCTION
Discrete event simulations can be used to analyse natu-

ral phenomena. To this end, one provides models whose be-
haviours are characterized by discrete events in a discrete
timeline. By running such a simulation, one can then observe
its properties.1 Our particular interest is in the simulation of
multi-agent systems, in which the simulation model is a set
of agents who interact within an environment [6]. A number
of tools exist for performing such simulations (e.g., [14; 10]),
and the need for methods for analysing them has already been
recognized (e.g., by [11]). However, compilation of statistics
over multiple simulation runs is often the only implemented
and imagined analysis mechanism, and formal verification is
seldom considered.

We believe that much more can be done in this respect. The
fundamental insight is that simulations, by their very nature,

1Notice that by “simulation” we do not mean the formal relation among
two transition systems, such as what [12] employs. As we explain, in this
article a “simulation” refers – broadly – to an abstract reproduction of some
target system by means of a detailed and executable model.

ought to run and produce traces. It is very natural then to ver-
ify whether the traces being produced obey some temporal
property. Runtime verification is particularly suitable for this
task, for, as we shall explain, it allows not only the analysis of
simulation runs, but also the on-the-fly choice of which runs
are more pertinent to the property being considered. Thus,
while full formal verification of simulation models is still a
difficult problem, at least approximate formal verification can
be performed.

This work presents a method that uses transitions systems
in order to perform simulations orderly and verify proper-
ties about them. To this end, the possible simulation paths
are described as a transition system, and the property to be
verified as another. Moreover, the property has some further
particularities that make it a special kind of transition sys-
tem, which we call a simulation purpose. Such simulation
purposes not only give criteria for correction but are also em-
ployed to guide the simulation, so that states irrelevant for
the property are not explored. The verification is achieved by
building – on-the-fly – a special kind of synchronous prod-
uct between these two transition systems. This construction,
moreover, assumes the existence of a simulator with a certain
interface, which is used to connect the formal analyses to the
actual simulation. This interface is very simple, and therefore
can be easily incorporated into existing simulators.

There are several kinds of analyses that one could perform
in this manner. In this presentation, however, we shall only
consider the task of determining whether there exists a sim-
ulation that conforms to a specified simulation purpose. This
reduces to searching for a particular path in the relevant syn-
chronous product, which can be done through a depth-first
search algorithm using a linear (in the depth) amount of mem-
ory.

The text is organized as follows. Section 2. comments on
the works that inspired our approach. Section 3. defines the
objectives of our verification technique by showing how a
systematic exploration of simulations can be thought of as the
performance of scientific experiments. Section 4. presents the
transition systems, including the simulation purposes. Section
5. defines the synchronous product and the relevant criterion
of correctness. Section 6., then, provides the verification al-
gorithm. Section 7. gives a concrete example of how the ap-
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proach can be useful. At last, Section 8. concludes. Appendix
A provides, as ancillary material, some auxiliary procedures
(and related explanations) used by the verification algorithm.

2. RELATED WORK
The inspiration for this work comes from the area of

Model-Based Testing, specially from the approach used by
TGV [7] to generate test cases from specifications. There, a
system under test is represented as a transition system, and a
formal test purpose is used to extract test cases that satisfy the
ioco conformance relation [16]. These test cases, then, can be
executed against an actual implementation of the specifica-
tion. TGV itself is based on a more general approach to the
on-the-fly verification of transition systems, which can also
be used to perform model-checking and to detect bisimula-
tion equivalences [4].

Our approach differentiates itself fundamentally from TGV
because our objective is not the generation of test cases, and
in particular we are not tied to the ioco conformance relation.
Indeed, our simulation purpose is itself the structure that shall
determine success or failure of a verification procedure (i.e.,
not some a posteriori test cases). As a consequence, different
criteria of success or failure can be given, and then computed
on-the-fly. In this paper we consider the case in which one
computed path terminates in a desirable state (which we call
a success state), but we could also have the stronger criterion
that requires all paths to terminate in such a desirable state.
As we shall see in Section 3., a number of particular method-
ological considerations are at the heart of these definitions.
Moreover, there are also other technical differences, such as
the fact that we use labelled states (and not only transitions),
and that simulation purposes need not be input complete.

As we pointed out in the introduction, runtime verification
of simulations are not usually done. Two notable exceptions
are the network simulator Verisim [3] and a multi-agent mod-
elling of food poisoning [13]. The approach taken by these
works consists in running the simulation normally, but check-
ing linear-time properties in the resulting execution traces.
This kind of approach can be implemented by the usual run-
time verification notion of a monitor, which is an extra com-
ponent that is added to the system in order to perform the
verification. Verisim [3], for instance, employs the MaC ar-
chitecture [8] to provide such a monitor for its simulations.
The precise nature of monitors vary according to the kind of
property to be analysed. But it turns out that linear-time prop-
erties are more suitable to this task, and thus most approaches
employ some variation of a linear-time logics, such as Linear
Temporal Logic (LTL).

However, the traditional semantics for LTL assumes an in-
finite execution trace. Thus, it is unable to cope with cases in
which only finite traces are available. To solve this problem,
one may modify LTL to account for the case in which traces

are finite entities. This approach is followed by a number of
works [5; 2; 9].

Our simulation purposes also express linear-time proper-
ties. However, they have particularities that are better defined
in the form of transition systems instead of logic formulas.
For example, the notion of events and state propositions are
different, and explicitly so. The possibility of expressing both
success and failure in the same structure is another important
point. Other requirements are examined in Section 3. below.

3. METHODOLOGICAL REQUIREMENTS
The formal approach that we present in the following sec-

tions is justified by the objective to which they should be ap-
plied, namely, the analysis of simulation models. Hence, in
this section we examine the general nature of these models,
and what kinds of questions are relevant for them.

We are interested in simulation models of multi-agent sys-
tems. That is to say, those systems that can be decomposed
into a set of agents and an environment in which these agents
exist. Often, the description of environments is much sim-
pler than that of the agents. When this is the case, we can
give a formal model for the environment and treat the agents
therein as black-boxes. As a working example, let us consider
a model of an online social network, where several persons
exist and can interact with each other through the features of
a website.2 Clearly, the behaviour of each individual person is
likely to be very complex, and if a model is given to them, it
probably won’t be a simple one (e.g., see [15]). But the envi-
ronment, on the other hand, can be described by some formal-
ism that merely define relations among agents (e.g., a process
algebra such as the π-calculus [12]), providing a much more
tractable model. The purely formal manipulations, then, can
be restricted to the environment model. An overview of such
an architecture is given in Figure 1.

Notice that this is analogous to an experimental scientist
working in his laboratory. The scientist is usually interested
in discovering the properties of some agents, such as animals,
chemicals, or elementary particles. He has no control over the
internal mechanism of these agents – that’s why experiments
are needed. But he can control everything around them, so
that they can be subject to conditions suitable for their study.
These scientific experiments have some important character-
istics:

• Inputs should be given to agents under experimentation;

• Outputs should be collected from these agents;

• Sometimes it is not possible to make some important
measurement, and therefore experiments often yield in-
complete knowledge;

2Current examples of such networks include popular websites such as
www.facebbok.com, www.orkut.com and www.myspace.com.
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Figure 1. Overview of the verification architecture based on
simulations of multi-agent systems. The simulator takes two
inputs: (i) a multi-agent system, composed by agent models
and an environment specification; (ii) a simulation purpose
to be verified. The simulator then produces traces as outputs.
Verification can be done at the simulation runtime level, as
well as at the trace level (if the traces are recorded). In this
paper, we only consider runtime verification, since we believe
this is more fruitful.

• The experiment is designed to either confirm some ex-
pectation (a success) or refute it (a failure);

• The experiment should last a finite amount of time, since
the life of the scientist is also finite;

• The experiment should be as systematic as possible,
though exhaustiveness is not require – the important
thing is to try as many relevant scenarios as possible.
In particular, the scientist may control how to continue
the experiment depending on how the agents react;

• The experiment should define a clear course of action
from the start;

• The experiment can be a way to find out how to achieve a
certain end, after trying many things. Therefore, it must
be performed in a constructive manner, and not merely
by deriving a contradiction;

• Absence of a success does not necessarily mean that
there is no way to achieve a desired effect. Hence, it is
convenient to know when something clearly indicates a
failure.

A simulation purpose is like such a scientist: it controls
the direction of the simulation and determines whether some-
thing constitutes a success or a failure by following similar
principles. An environment model, in turn, is similar to the
experimental setup, with its several instruments and agents.
The simulation purpose interacts with the environment model
in order to achieve its aims. All of this is accomplished by
considering these two artefacts as transition systems.

In this way, the technique we present in this paper should
be seen as a method to automate experiments undertaken em-
ploying simulations of either natural or artificial phenomena.

4. SEMANTIC MODEL
To formally describe the systems of interest (e.g., the envi-

ronments presented in Section 3.), we define annotated tran-
sition systems (ATSs), which essentially are transition systems
with labels given to both states and transitions.3 The proper-
ties to be checked, in turn, are given by simulation purposes
(SPs), which are merely ATSs subject to some further restric-
tions.

In an ATS, events play a central role, and are further di-
vided into input events (e.g., ?x) and output events (e.g., !x).
The former represent events that may be controlled by the ver-
ification procedure (i.e., may be given as an input to the simu-
lator), and the latter events that cannot (e.g., because they are
the output of some internal – and uncontrollable – behaviour
of the simulator). These events are complementary, and for
a given event e we denote its complement by eC. There are
also two special events: (i) one called other and denoted by
�, which is a convenience to allow the definition of the set
of events that have not been specified in a given state (i.e., �
signals that something not specified happened).4; and (ii) an-
other called internal, denoted by τ, which accounts for hidden
(and thus anonymous) events.

Definition 1 (Annotated Transition System) An annotated
transition system (ATS) is a tuple 〈S,E,P,→,L,s0〉 such that:

• S is the set of primitive states.

• E is the finite set of primitive events.

• P is the finite set of primitive propositions.

• →: S×E×S is the transition relation.

• For any s ∈ S and e ∈ E, there are only finitely many
s′ ∈ S such that s e→ s′ (i.e., finite branching).

• L : S 7→ P(P∪¬P) is the labelling function.5

• For all s ∈ S and all p ∈ P, if p ∈ L(s), then ¬p 6∈ L(s)
(i.e., the labelling function is consistent).

• s0 ∈ S is the initial state.

3Our definition of ATS is very similar to what is merely called a transition
system in [1]. We think, however, that it is worth to emphasize that it is a
special kind of transition system, in order to avoid confusion. In particular,
an ATS is not what is usually called a Labelled Transition System (LTS)
[12], in which only transitions are labelled. We also impose certain criteria
of finiteness.

4As a technicality, we define that �C = �.
5By P(P∪¬P) we mean the power set of (P∪¬P) (i.e., the set of all

subsets of (P∪¬P)), and by ¬P we mean the set {¬p | p∈ P}. This notation
shall be used throughout the text.
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Notice, in particular, that the labelling function associates
literals6, and not merely propositions, to the states. This al-
lows the specification that some propositions are known to
be false in a state (i.e., ¬p), but also that other propositions
are not known (i.e., in case neither p nor ¬p are assigned
to the state). This last possibility is convenient for modelling
situations in which the truth value of a proposition cannot be
assessed, as may it happen in experimental situations.

Thus, an ATS represents some system that can be in several
states, each one possessing a number of attributes, and a num-
ber of transition choices. The system progresses by choosing,
at every state, a transition that leads to another state through
some event. Given an ATS, any such particular finite sequence
of its events and states is called a trace.

A simulation purpose, in turn, is an ATS subject to a num-
ber of restrictions. In particular, it defines states to indicate
either success or failure of the verification procedure (i.e.,
verdict states), and is deterministic to avoid contradictory ver-
dicts.

Definition 2 (Simulation Purpose) A simulation purpose
(SP) is an ATS 〈Q,E,P, ,L,q0〉 such that:

(i) Q is finite.

(ii) Success ∈ Q is the verdict state to indicate success.

(iii) Failure ∈ Q is the verdict state to indicate failure.

(iv) L(q0) = L(Success) = L(Failure) = /0.

(v) For every q ∈ Q, if there are q′,q′′ ∈ Q and e ∈ E such
that q e

 q′ and q e
 q′′, then q′ = q′′ (i.e., transitions

are deterministic).

(vi) For every q ∈ Q, there exists a trace from q to either
Success or Failure.

A visual depiction of both a general ATS and a simulation
purpose is given in Figure 2.

5. VERIFICATION TASK
We have defined both a way to describe a system of interest

and the properties we wish to verify over such a system. Now
we may describe precisely in what this verification consists.

The idea that a simulation purpose can select which traces
to consider in another ATS is formalized by the notion of syn-
chronization. Since both events and states contain relevant in-
formation for this selection, a particular definition for each
case is first required, as follows.

6For any proposition p, its associate literal l is defined either by l = p or
l = ¬p. In the former case, we say it is a positive literal, whereas in the latter
we say it is a negative literal.
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Figure 2. Examples of: (i) an ATS; and (ii) a simulation pur-
pose. Transitions are annotated with events (i.e., ?a, ?b, ?c,
?d, ?e, ? f , !a, !b, !c, !d, !e, ! f ) and states are annotated with
literals (i.e., x, y, z). The Success state is denoted by the green
double circle, while the Failure state is denoted by the red
double square.

Definition 3 (Event Synchronization) Let SP =
〈Q,Esp,Psp, ,Lsp,q0〉 be a simulation purpose, and
M = 〈S,E,P,→,L,s0〉 be an ATS. Moreover, let

q1
e1 q2 be a transition from SP ; and

s1
e2→ s2 be a transition from M .

Then we define that events e1 and e2 synchronize, denoted
by e1 ./ e2, if, and only if, one of the following cases holds:

• e1 =?n and e2 =!n for some name n; or

• e1 =!n and e2 =?n for some name n; or

• e1 6= � and e2 = �; or

• e1 = � and there is no q′ ∈ Q such that q1
eC

2 q′; or

• e1 = e2 = τ.

Definition 4 (State Synchronization) Let SP =
〈Q,Esp,Psp, ,Lsp,q0〉 be a simulation purpose, and

241



M = 〈S,E,P,→,L,s0〉 be an ATS. Moreover, let q ∈ Q be a
state from SP and s ∈ S be a state from M . Then we define
that q and s synchronize, denoted by q ./ s, if, and only if,

Lsp(q)⊆ L(s)

We may then specify the overall synchronous product,
which, by synchronizing events and states, selects only the
traces relevant for the simulation purpose. The result of such a
product, then, is an ATS that contains only the relevant traces.

Definition 5 (Synchronous Product) Let SP =
〈Q,Esp,Psp, ,Lsp,q0〉 be a simulation purpose, and
M = 〈S,E,P,→,L,s0〉 be an Environment ATS. Then their
synchronous product, denoted as

SP ⊗M

is an ATS M ′ = 〈S′,E ′,P′,→′,L′,s′0〉 such that:

• E ′ = E;

• P′ = P;

• S′ and→′ are constructed inductively as follows:

– Initial state. s′0 = (q0,s0) ∈ S′ and L′(s′0) = L(s0).

– Other states and transitions. Built using the fol-
lowing rule:

q
e1 q′ s

e2→ s′ (q,s) ∈ S′ e1 ./ e2 s′ ./ q′

(q,s)
e2
→′ (q′,s′)

• If (q′,s′) ∈ S′, then L′((q′,s′)) = L(s′)

In the example of Figure 2, only the trace
(s0,?a,s1,?b,s2, !d,s4) would belong to the product of
(i) and (ii).

Given this product, there are a number of properties that
one might wish to analyse about it. In this paper, we shall
merely consider the question of whether the simulation pur-
pose is capable of conducting to a state of success. This is
to be interpreted as the possibility of constructing an experi-
ment, which can be used as evidence either in favor or against
some hypothesis. We formalize this with the following notion
of feasibility.

Definition 6 (Feasibility) Let SP be a simulation purpose
and M be an ATS. Then we define that SP is feasible with
respect to M if, and only if, for some state (q,s) in SP ⊗M ,
q = Success. Otherwise, we call it unfeasible. Moreover, the
trace that leads to Success is called feasible trace.

6. VERIFICATION ALGORITHM
We now present an on-the-fly algorithm to check the feasi-

bility property defined previously. To do so, we first introduce
a simulator interface, which abstracts the features of a simula-
tor. We then present the algorithm itself, which employs this
interface, and analyse its properties.

6.1. Simulator Interface
In order to work with our verification algorithm, a simula-

tor must provide the following operations:

• GoToState(s): Makes the simulation run return to
the specified simulation state s, which must have taken
place previously.

• CurrentState(): Returns the current simulation
state.

• CanStep(e): Checks whether the specified event e can
be performed by the simulator. Note that this allows the
simulator to influence the verification algorithm.

• ScheduleStep(e): Schedules the specified event e
for simulation.

• Step(): Requests that all scheduled events get simu-
lated.

• isCommitEvent(e): Checks whether e is an event
that serves as a signal of when it is appropriate to call
the Step() operation. Such an event can be thought
of as a clock used by the simulator. If the simulator does
not employ any such clock, this operation always returns
true.

6.2. Feasibility Verification
Algorithm 1 implements feasibility verification. Besides

the simulator operations described above, it also assumes that
the following simple functions and constants are available:

• CanSynch(q
f
 q′, s

g→ s′): Checks whether the two
specified transitions can synchronize according to Defi-
nition 5.

• Successors(ATS, s): Calculates the set of all transi-
tions in the specified AT S that have the state s as their
origin.

• depthmax: The maximum depth allowed in the search
tree. Note that since simulations are always finite (i.e.,
they must stop at some point), we can assume that
depthmax is finite as well.

The remaining procedures required for the algorithm are
given in Appendix A.
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Algorithm 1: On-the-fly verification of feasibility
Input: A simulation purpose

SP = 〈Q,Esp,Psp, ,Lsp,q0〉 and an ATS
M = 〈S,E,P,→,L,s0〉.

Output: SUCCESS and a feasible trace in SP if it is
possible to show that SP is feasible over M ;
FAILURE if no such feasible trace was found
after trying all relevant synchronizations;
INCONCLUSIVE if there was not sufficient
resources to try all relevant synchronizations.

dist[ ] := Preprocess(SP , success);1

let SynchStack be an empty stack;2

let sim0 := CurrentState() ;3

let Unexplored0 := Successors(SP , q0);4

Push (q0,s0,nil,nil,sim0,Unexplored0,0) on5

SynchStack;
let verdict := FAILURE;6

while SynchStack 6= /0 do7

Peek (q,s,e, p,sim,Unexplored,depth) from8

SynchStack;
let progress := f alse;9

while Unexplored 6= /0∧ progress =10

f alse∧depth < depthmax do
q

f
 q′ := RemoveBest(Unexplored, dist[ ]);11

let depth′ = depth+1;12

foreach s
g→ s′ ∈ Successors(M , s) do13

GoToState(sim);14

ScheduleStep(g);15

if isCommitEvent(g) then16

Step();17

if CanSynch(q
f
 q′, s

g→ s′) then18

sim′ := CurrentState();19

unexplored′ := Successors(SP , q′);20

Push21

(q′,s′, f ,q,sim′,unexplored′,depth′) on
SynchStack;
progress := true;22

if q′ = success then23

return SUCCESS and24

BuildTrace(SynchStack, q′,
depth′);

if depth≥ depthmax then25

verdict := INCONCLUSIVE;26

if progress = false then27

Pop from SynchStack;28

return verdict;29

How the Algorithm Works First of all, a preprocessing of
the simulation purpose is required. This consists in calculat-
ing how far from the desired verdict state each of the states in
the simulation purpose is. By this provision, we shall be able
to take the shortest route from any given simulation purpose
state towards the desired verdict. The importance of such a
route is that it avoids cycles whenever possible, which is cru-
cial to prevent the algorithm from entering in infinite loops
later on. For every simulation purpose state q, then, its dis-
tance to the desired verdict state is stored in dist[q].7

Once this preprocessing is complete, the algorithm per-
forms a depth-first search on the synchronous product
SP ⊗M . The central structure to achieve this is the stack
SynchStack. Every time a successful synchronization be-
tween a transition in SP and one in M is reached, informa-
tion about it is pushed on this stack. The pushed information
is a tuple containing the following items:

• The state q of SP that synchronized.

• The state s of M that synchronized.

• The event e of SP that synchronized. This will be used
later to calculate a trace.

• The state p of SP that came immediately before the one
that has been synchronized (i.e., p e

 q). Again, this will
be used later to calculate a trace.

• The state of the simulation, sim, which can be extracted
from the simulator using the CurrentState() func-
tion.

• The set of transitions starting at q (i.e., Unexplored =
Successors(SP , q)) which have not been explored
yet.

• The depth in the search tree.

In the beginning, we assume that the initial states
of both transition systems synchronize and push the
relevant initial information on SynchStack. Thereafter,
while there is any tuple on the stack, the algorithm
will systematically examine it. It peeks the topmost
tuple, (q,s,e, p,sim,Unexplored,depth), and access its
Unexplored set. These are simulation purpose transitions be-
ginning in q which have not yet been considered at this point.
The algorithm will examine each of these transitions while:
(i) no synchronization is possible (i.e., the variable progress
is f alse); and (ii) the search depth is below some maximum
limit depthmax. In case (i), the rationale is that we wish to
proceed with the next synchronized state as soon as possible,
so once we find a synchronization, we move towards it. If
that turns out to be unsuccessful, the set Unexplored will still

7Appendix A explains how this preprocessing is actually performed.
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hold further options for later use. In case (ii), we are merely
taking into account the fact that there are situations in which
the algorithm could potentially go into an infinite depth. For
instance, SP could contain a cycle that is always taken be-
cause no other synchronizations are possible starting from the
beginning of this cycle. The depth limit provides an upper-
bound in such cases, and forces the search to try other paths
which might lead to a feasible trace, instead an infinite path.

In each iteration of this while loop, the algorithm selects

the best transition q
f
 q′ available in Unexplored. This se-

lection employs the preprocessing of the simulation purpose,
and merely selects the transition that is closer to the goal.

That is to say, q′ is such that there is no q
f
 q′′ such that

dist[q′′]< dist[q′]. As we remarked above, this is intended to
guide the search through the shortest path in order to avoid
cycles whenever possible. Once such a transition is chosen,
we may examine all possible transitions of M starting at s,
the current synchronized state.

At this point, the simulator interface will be of importance.
For each possible transition s

g→ s′, we have to instruct the
simulator to go to the simulation state sim in the peeked tu-
ple. This simulation state holds the configuration of the struc-
tures internal to the simulator that correspond to the transi-
tion system state s. The algorithm may then request that the
event g be scheduled. Then, if the event turns out to be a com-
mit event, the simulator is instructed to perform one simula-
tion step, which implies in delivering all the scheduled events.
This will put the simulator into a new state, which will cor-

respond to s′ in M . Then we may check whether q
f
 q′ and

s
g→ s′ can synchronize. If it is possible, then we either have

the desired success state or we don’t. In the first case we have
found the feasible trace we were looking for and we are done.
In the latter case, we merely push the current state of affairs
on SynchStack for later analysis and register the successful
synchronization by setting progress to true.

If the algorithm abandons a search branch because its depth
is greater or equal to depthmax, the verdict in case of failure is
set to be INCONCLUSIVE, since it is possible that there was
a feasible trace with length greater than depthmax that was
not explored. Moreover, it is possible that after examining all
transitions in Unexplored, none synchronized (i.e., the vari-
able progress is still set to f alse). If this happens, the tuple is
popped from SynchStack because by then we are sure that no
feasible trace will require it.

At last, if SynchStack becomes empty, it means that no path
in SP with up to depthmax states led to a feasible trace. So
we return a verdict which will be FAILURE if depthmax was
never reached, or INCONCLUSIVE otherwise.

Termination and Efficiency The algorithm is essentially
a depth-first search. Since by hypothesis depthmax is finite,

each search branch will be finite. Moreover, since SP con-
tains a finite number of states and events, and is used to
choose the search branches, it follows that there are only
finitely many such branches. Therefore, Algorithm 1 always
terminates.

Concerning efficiency, since the search depth is bounded
by depthmax, it should be clear that it consumes O(b ·
depthmax) memory, where b is the maximal branching fac-
tor of M (i.e., the maximal number of successors that a state
of M may have). Running time, however, is much worse. Let

us suppose the worst case and say that q
f
 q′ and s

g→ s′

can always synchronize. Then, for each point in a trace of the
synchronous product, we shall have no more than either |Q| ·b
(for states) or |Esp| · |E| (for events) possibilities. Let m be the
greater of these two quantities. This results in O(mdepthmax)
running time. Nonetheless, by crafting simulation purposes
well, one may find practical ways to improve performance
(e.g., by being as restrictive as possible).

7. EXAMPLE
Recall from Section 3. that we are interested in the sim-

ulation and verification of multi-agent systems. Let us then
continue the example suggested there, namely, that of mod-
elling and analysing an online social network.

There are, of course, a large number of events to account
for in such a network. For simplicity, though, we will only
consider the following ones:

• !guii: A graphical user interface i is chosen for the web-
site;

• !adag
i : Advertisement i is delivered to agent ag;

• ?buyag
i : Agent ag buys product i;

• ?msgag2
ag1 : Agent ag1 sends a message to agent ag2.

Similarly, a number of propositions about the states can be
defined. For the example, these suffice:

• mag: True if and only if agent ag likes music;

• yag: True if and only if agent ag is young.

Furthermore, let us assume that the objective of this model
is to analyze marketing strategies for a product A targeted to
young music lovers. In this way, a possible simulation pur-
pose could be informally described as the following question:
is there a way to setup the website and deliver advertisement
so that users will buy the advertised product? Formally, we
could have something like the simulation purpose shown in
Figure 3. Notice that the event ?msgag2

ag1 is not present in this
simulation purpose, although it’s probably a frequent event in
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?buy2
A

?buy1
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Figure 3. The example’s simulation purpose. We assume
only two agents for this example, and only one competing
product, B. A possible trace could be as follows: we imple-

ment GUI 1 (q0
!gui1 q1), deliver advertisement 1 to agent 2

(q1
!ad2

1 q3), and then realize that agent 2 indeed buys product

A (q3
?buy2

A success).

such a social network. This means that the event is not con-
sidered relevant for the task at hand, and thus a large part of
the possible simulations can be safely ignored.

We may then investigate whether SP is feasible over M .
That is to say, whether it is possible to convince users to buy
a product by following some marketing strategy. A positive
verdict would not only suggest that it is possible, but would
also provide one such strategy. The experimenter, then, could
use this strategy in the actual social network, not the simu-
lated one. As long as the model M is a sufficiently accurate
representation of reality, such an approach would provide a
way to evaluate several ideas before applying them in the real
system, which not only would save resources, but would also
prevent bad strategies from causing damage (e.g., by submit-
ting real users to an unbearable amount of advertisement).

This example exploits some of the key features of our tech-
nique:

• Social models are naturally complex and it would be
unrealistic to consider exact and exhaustive analyses.
Hence, using simulations to partially explore them is
preferable;

• Verdicts are calculated in a constructive manner, which
allows the provision of instructions to achieve the verdict
(and therefore replicate the result on the real system);

• Much of the model is irrelevant for some verification
tasks. In the example, the event ?msgag2

ag1 was not perti-
nent for the verification. It is convenient then that the
property to be verified contains this information explic-

itly and is capable of avoiding some irrelevant simula-
tions;

• Some forms of failure are explicit. In the example, if
the agent buys the competitor product B, the marketing
strategy is considered to have failed for that agent, and
therefore one can immediately proceed to the analysis of
another agent.

8. CONCLUSION
In this work, we have shown a way to perform an on-the-

fly product of two annotated transition systems, SP and M ,
in order to verify properties of interest. M is a model of the
system to be verified. SP formalizes the property to be ver-
ified, is subject to some extra conditions, and for this rea-
son receives the name of simulation purpose. The verification
algorithm consist in using SP in order to partially explore
M . By this method, we allow the approximate verification
of systems arising from discrete event simulation and, more
specifically, the simulation of multi-agent systems, in which
environments can be effectively represented as ATSs.

For brevity, we have considered only verifications that seek
one feasible path. It should be clear, though, that one may
adapt the provided approach in order to check other proper-
ties. For instance, one may be interested in whether all paths
of a synchronous product are feasible.

We are experimenting with the proposed method in our
own simulator, but it should also be possible to incorporate
it in most other existing platforms, since the required simula-
tor interface is very simple.
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A ANCILLARY MATERIAL
This appendix presents the auxiliary procedures used by

Algorithm 1 that were not considered in the main text.

Preprocessing Procedure: Handling Cycles
Algorithm 1 employs a preprocessing procedure, which we

give below.

Procedure Preprocess(SP , v)
Input: A simulation purpose SP = 〈Q,E,P, ,L,q0〉

and a verdict state v.
let visited[ ] be a map from states to boolean values;1

let dist[ ] be a map from states to either natural numbers2

or nil;
foreach q ∈ Q do3

visited[q] := f alse;4

dist[q] := nil;5

PreprocessAux(SP , q0, v, dist[ ], visited[ ]);6

foreach q ∈ Q do7

visited[q] := f alse;8

PreprocessAux(SP , q0, v, dist[ ], visited[ ]);9

return dist[ ];10

Let us now consider why it accomplishes what we claim.
We have said that a preprocessing of SP is required in order
to deal with its cyclic paths. By this provision, we shall be
able to determine at any state of SP which successor is closer
to the desired verdict state. Since any cyclic path from a state
is longer than an acyclic one from the same state, this suffices
to avoid cycles whenever possible. That said, let us see how
this minimum distance is calculated by Preprocess().

Notice first that the calculation is divided between
the main Preprocess() procedure and the auxiliary
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PreprocessAux() procedure. Indeed, Preprocess()
merely: (i) initializes two maps, visited[ ] and dist[ ], which
stores whether a state has been visited and the distance
from a state to the desired verdict, respectively; and (ii)
call PreprocessAux() twice. In the first call, all the
acyclic paths shall be examined and have the corresponding
dist[ ] values set. In the second call, using this partial dist[ ],
PreprocessAux() is then capable of computing the dis-
tances for the states in cyclic paths as well.
PreprocessAux() is a function that for a given source

state recursively examines all of its successor states q′ to de-
termine which one is closer to the desired verdict state v. Once
the closer successor q∗ is found, the procedure merely sets
dist[source] := dist[q∗]+1. The recursion base takes place in
three situations. First, when the source being examined is ac-
tually the verdict state v, and therefore its distance is 0. Sec-
ond, if the source being considered has no successors, and
thus cannot get to v, which implies that dist[source] =∞. And
third, when all successors of source have already being vis-
ited.

Procedure PreprocessAux(SP , source, v, dist[ ],
visited[ ])
Input: A simulation purpose SP = 〈Q,E,P, ,L,q0〉, a

source ∈ Q, a map dist[ ], a map visited[ ] and a
verdict state v.

visited[source] = true;1

if source = v then2

dist[source] := 0;3

else4

let min := nil;5

if Successors(SP , source)= /0 then6

min := ∞;7

else8

foreach source
f
 q′ do9

if visited[q′] = f alse then10

PreprocessAux(SP , q′, v, dist[ ],11

visited[ ]);
if dist[q′] 6= nil then12

if min = nil then13

min := dist[q′]14

else if dist[q′]< min then15

min := dist[q′];16

if min 6= nil then17

min := min+1;18

dist[source] := min;19

In the latter case it means that the function has found a cy-

cle. Moreover, because of the recursive nature of the func-
tion, none of the successors q′ will have their dist[q′] set
yet, so that dist[source] shall remain nil, which indicates that
source is in a cycle. However, when Preprocess() calls
PreprocessAux() a second time, these dist[q′] will be
set, so that even in the case in which source is in a cycle, we
shall be able to assign it a distance. This distance, indeed, is
nothing but the sum of an acyclic path and the length of the
corresponding cycle. That is to say, for any source located
in a cyclic path, the procedure assign it the shortest distance
considering a way to get out of the cycle. Since by Defini-
tion 2 there is always an acyclic path towards a verdict state,
it is always possible to calculate this distance. This provides
guidance to avoid cycles whenever possible.

Successor Selection
The procedure for selecting the best among possible suc-

cessors, which employs the results from the preprocessing, is
given below.

Procedure RemoveBest(Unexplored, dist[ ])

let s
g→ s′ ∈Unexplored such that there is no1

s
g→ s′′ ∈Unexplored with dist[s′′]< dist[s′];

return s
g→ s′2

Feasible Trace Synthesis
Feasible traces, once found, are made explicit using the in-

formation available at the search stack. The procedure below
accomplishes this.

Procedure BuildTrace(SynchStack, q∗, depth∗)

let Trace be a list initially empty;1

while SynchStack 6= /0 do2

Pop (q′,s′, f ,q,sim,Unexplored,depth) from3

SynchStack;
if q′ = q∗∧depth∗ = depth then4

Put q′ at the beginning of Trace;5

Put f at the beginning of Trace;6

q∗ := q;7

depth∗ := depth∗−1;8

return Trace;9
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