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Abstract
Discrete event simulations can be used to analyze natural and artificial phenomena. To this end, one provides models
whose behaviors are characterized by discrete events in a discrete timeline. By running such a simulation, one can then
observe its properties. This suggests the possibility of applying on-the-fly verification procedures during simulations. In
this work we propose a method by which this can be accomplished. It consists of modeling the simulation as a transition
system (implicitly), and the property to be verified as another transition system (explicitly). The latter we call a simulation
purpose and it is used both to verify the success of the property and to guide the simulation. Algorithmically, this corre-
sponds to building a synchronous product of these two transitions systems on-the-fly and using it to operate a simulator.
By the end of such an algorithm, it may deliver either a conclusive or inconclusive verdict. If conclusive, it becomes
known whether the simulation model satisfies the simulation purpose. If inconclusive, it is possible to adjust certain para-
meters and try again. The precise nature of simulation purposes, as well as the corresponding satisfiability relations and
verification algorithms, are largely determined by methodological considerations important for the analysis of simula-
tions, whose computational characteristics we compare with empirical scientific procedures. We provide a number of
ways in which such a satisfiability relation can be defined formally, the related algorithms, and mathematical proofs of
soundness, completeness and complexities. Two application examples are given to illustrate the approach.
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1. Introduction

Discrete event simulations can be used to analyze natural

and artificial phenomena. To this end, one provides mod-

els whose behaviors are characterized by discrete events in

a discrete timeline. By running such a simulation, one can

then observe its properties.i Our particular interest is in the

simulation of multi-agent systems (MASs), in which the

simulation model is a set of agents who interact within an

environment.2 A number of tools exist for performing such

simulations,3,4 and the need for methods for analyzing

them has already been recognized.5,6 However, compila-

tion of statistics over multiple simulation runs is often the

only implemented analysis mechanism, while formal veri-

fication is seldom considered.

Much more can be done in this respect. The fundamen-

tal insight is that simulations, by their very nature, ought

to run and produce traces. It is very natural then to verify

whether the traces being produced obey some temporal

property. Runtime verification is particularly suitable for

this task, for, as we shall explain, it allows not only the

analysis of simulation runs, but also the on-the-fly choice

of which runs are more pertinent to the property being con-

sidered. Thus, while full formal verification of simulation

models is still a difficult problem, at least approximate for-

mal verification can be performed. Let us expand this

insight and shed further light on the rationale for incorpor-

ating formal verification ideas in simulation analysis.
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1.1. The case for combining formal verification and
simulation

Formal verification and simulation methods are often seen

as antagonists. The former answer questions with certainty

either through formal proofs or by examining some model

exhaustively, at the cost of either human effort (e.g. in

writing proofs) or computational resources (e.g. in explor-

ing exhaustively exponentially large state-space). The lat-

ter answers questions only in a partial and approximate

manner, but at a much lower cost in terms of both human

effort and computational resources. Moreover, formal veri-

fication is often only feasible in relatively small or abstract

models (owing to the well-known state-explosion prob-

lem), whereas simulation methods can be applied to any

system that can run at all, since it is by observing execu-

tions of the system (or a detailed model of it) that a simu-

lation technique proceeds.

It is fair to say, however, that both approaches are seen as

ways to automate the analysis of systems. The effort spent in

building formal models or simulation models is worth

because, once built, they allow one to investigate various

properties of interest with the aid of a computer, instead of

doing so manually. Therefore, they are not very different in

their fundamental purposes, but only in their methods. With

this in mind, let us sketch the fundamental elements of these

approaches to see why and how they can be combined.

As stated above, both approaches aim at modeling and

analyzing some system, call it M . Given such an M , the

following are the main kinds of problems one may be

interested in.

(i) Does M satisfy a property P?

(ii) What kinds of behaviors can be observed during

M’s execution? Does it conform with our

expectations?

(iii) What inputs should be given to M to make inter-

esting observations?

(iv) What inputs should be given to M in order to opti-

mize some of its output value?

The first kind is strongly associated with formal verifi-

cation, whereas the others most often belong to simulation.

Indeed, formal verification has its roots on mathematical

logic, in which one is traditionally interested in the truth

value of predicates (such as a logic formula P) with

respect to some object (such as a formal specification M).

In this article, the particular kind of formal verification

that concerns us is model checking,7 where P is given as a

formula of some temporal logic and M is a transition sys-

tem whose states are labeled by atomic propositions. Each

path in M is a possible evolution of the system. The objec-

tive is to check whether P holds considering all of these

possible evolutions. This is achieved in various manners

by different model checking techniques, but essentially

they all systematically explore M having P as a guide.

As we said earlier, simulations necessarily produce

traces of their execution, and thus one can easily imagine

a transition system defined by all possible executions of

some simulation model. In this manner, one can obtain an

M similar to that which is used in model checking. What

about P, can it be obtained from the problems relevant to

the analysis of a simulation model? Let us examine the

remaining items from the list of problems above:

(ii) Our expectations about the behavior of M can be

characterized by making assertions about the

value of variables in the several steps of a simula-

tion. Thus, one can formally specify it through

some formal property P. This matches closely the

way formal verification works.

(iii) Part of what makes an observation interesting

might be known a priori. For example, we may

be concerned with what happens under a set of

particular circumstances. This can be formally

specified through some P by defining precondi-

tions that determine which states in M are (poten-

tially) interesting and which are not (and thus can

be safely discarded from further simulations).

This can be coupled with an algorithm to generate

candidate inputs, which are then subject to simu-

lation and whose traces can be examined by the

user after the irrelevant (with respect to P) traces

are removed.

(iv) The optimization of some variable can be defined

by simple mathematical assertions, thereby easily

providing a P to be used when assessing the out-

put of a simulation. The actual optimization can

be carried out by generating a set of candidate

inputs, simulating all of them and finally selecting

the inputs which produced the best output with

respect to P.

Therefore, one can always obtain a P which helps in

the job of assessing a simulation model. From this discus-

sion, it is clear that one can theoretically see the explora-

tion of a simulation model under a formal verification

perspective. It remains to ask, though, whether it is actu-

ally worth doing so.

The answer which the present article supports is that

the usefulness of this depends on how much information P

carries. The more informative P can be made, the more

useful it is to use such a hybrid approach. This arises from

the fact that an informative P can be used to algorithmi-

cally discard many irrelevant simulations, thereby focus-

ing the attention of the user on those simulations which

are potentially interesting. In other words, instead of rely-

ing on a human operator to manually define inputs and run
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a simulation, by adopting such a hybrid approach one can

capture the operator’s a priori knowledge and expectations

(through P) and automate the whole process. The objec-

tive is not to exhaustively explore M (as it would be in a

pure formal verification method), but merely to systemati-

cally and automatically explore M so that only promising

simulations are performed. Hence, it is a way to address

the already recognized problems of automating5,6 and pro-

viding standard tools2 to the exploration and analysis of

simulations.

The use of formal verification in more empirically

oriented areas is not a possibility unique to simulation.

Software testing has seen considerable progress with the

incorporation of ideas from formal verification, which

resulted in the area of model-based testing.8,9 The fact that

such combinations are possible elsewhere suggests that

there might be gains in applying them in the context of

simulations. Indeed, as we explain later, the approach pro-

posed here is inspired by a technique from model-based

testing.

What was said above is a general account of the reasons

for incorporating formal verification ideas, in particular

those from model checking, in the analysis of simulation

models. Our particular technique does not, of course, cover

all possibilities that arise from the discussion. For example,

we do not address optimization problems. However, we do

offer a comprehensive method to address satisfiability

problems, that is to say, to check whether, and how, our

expectations about a simulation model hold or not. Our P

is given as a simulation purpose, a structure that is used

both to specify the property of interest and to guide the

simulation executions, so that only the relevant simulations

are performed. We hope that our particular application of

the above principles serve not only as a direct technical

contribution, but also as a compelling argument in favor of

those general principles themselves.

1.2. Contribution of this article

This work presents a method that uses transitions systems

in order to perform simulations orderly and verify proper-

ties about them. To this end, the possible simulation paths

are described as a transition system (an annotated transi-

tion system (ATS), as we call it), and the property to be

verified as another. Moreover, the property has some fur-

ther particularities that make it a special kind of transition

system, which we call a simulation purpose. Such simula-

tion purposes not only give criteria for satisfiability but are

also employed to guide the simulation, so that states irrele-

vant for the property are not explored. The verification is

achieved by building, on-the-fly, a special kind of synchro-

nous product between these two transition systems.

The ATS to be analyzed is given implicitly by the

simulator. That is to say, at each simulation step the simu-

lator provides choices concerning the next possible

simulation events to take place, thus incrementally

describing a transition system. Clearly, this on-the-fly con-

struction assumes the existence of a simulator with a cer-

tain interface. However, this interface is very simple, and

therefore can be easily incorporated into existing simula-

tors. Furthermore, although we developed this method

with the verification of MASs in mind, the resulting tech-

nique is actually applicable to a much larger class of dis-

crete event simulations: those that satisfy the said

simulator interface, which is tied to the notion of events,

not agents.

Simulation purposes, in turn, are given explicitly by the

user. They describe the desirable and undesirable simula-

tion runs. Mathematically, they are used to select the rele-

vant part of the ATS being analyzed, which results in their

synchronous product. By investigating the structure of this

product one can determine whether the simulation satisfies

the simulation purpose in a number of precise senses. In

this article, our focus is on four such satisfiability relations.

On the one hand, feasibility (refutability) consists of check-

ing whether some particular desirable (undesirable) path

on the simulation purpose can actually be simulated. On

the other hand, certainty (impossibility) requires that all

desirable (undesirable) paths in the simulation purpose can

actually be simulated.

Algorithmically, the verification of these four relations

are all very similar, and it consists, essentially, in perform-

ing a depth-first search in the synchronous product of the

two transition systems. In the case of the first two relations,

this search seeks a run to show that the property holds,

whereas in the last two it seeks a run to show that the prop-

erty does not hold. Because it is a depth-first search, mem-

ory consumption is linear with respect to the search depth.

Running time, however, in the worst case can be exponen-

tial with respect to the depth. While this difficulty exists,

the fact that a part of the relevant simulations can be auto-

matically and systematically chosen, run and judged is

already valuable, and provides an approximate way of

exploring them.

The present article is a substantially extended version

of our initial presentation in da Silva and de Melo.10 In

particular, here we provide more detailed definitions, more

satisfiability relations and related algorithms, and full

mathematical proofs of soundness, completeness and com-

plexity. This is the result of a PhD thesis.11

The text is organized as follows. Section 2 comments

on the works that inspired our approach. Section 3 defines

the objectives of our verification technique by showing

how a systematic exploration of simulations can be

thought of as the performance of scientific experiments.

Section 4 presents the general form of our ATSs, while

Section 5 defines simulation purposes. The whole tech-

nique is based on the synchronous product of these two

entities, which is thus introduced in Section 6. There are

more than one way in which an ATS can satisfy a
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simulation purpose, and these several manners are consid-

ered in Section 7. Section 8, then, provides the verification

algorithms themselves, along with an informal explanation

(mathematical proofs of correctness and complexity are

provided in Appendix A). Section 9 gives a concrete

example of how the approach can be useful. Finally,

Section 10 concludes.

2. Related work

The inspiration for this work comes from the area of

model-based testing,8 specially from the approach used by

TGV12 to generate test cases from specifications. There, a

system under test is represented as a transition system, and

a formal test purpose is used to extract test cases that sat-

isfy the ioco conformance relation.9 These test cases, then,

can be executed against an actual implementation of the

specification. TGV itself is based on a more general

approach to the on-the-fly verification of transition sys-

tems, which can also be used to perform model-checking

and to detect bisimulation equivalences.13

Our approach differentiates itself fundamentally from

TGV because our objective is not the generation of test

cases, and in particular we are not tied to the ioco confor-

mance relation. Indeed, our simulation purpose is itself the

structure that shall determine success or failure of a verifi-

cation procedure (i.e. not some a posteriori test cases). As

a consequence, different criteria of success or failure can

be given, and then computed on-the-fly. In this article we

consider the case in which one computed path terminates

in a desirable state (which we call a success state), but we

could also have the stronger criterion that requires all paths

to terminate in such a desirable state. As we shall see in

Section 3, a number of particular methodological consid-

erations are at the heart of these definitions. Moreover,

there are also other technical differences, such as the fact

that we use labeled states (and not only transitions), and

that simulation purposes need not be input-complete.

As we pointed out in the introduction, formal verifica-

tion is not typically used together with simulation. There

are, however, a few exceptions. Bosse et al.14 present the

Temporal Trace Language (TTL), which has an associated

tool, designed to define simulation models (in a sublan-

guage called LEADSTO), as well as linear-time properties

about such models. The approach is to execute the simula-

tion model and check whether the resulting traces obey the

specified linear-time properties. An example of this

method is given by Bosse and Gerritsen,15 where criminal

behavior is modeled, simulated and analyzed. Our pro-

posed method contrasts with this mainly in two aspects.

First, only part of the input we require is formal (part is

given as black-boxes to be simulated, which can be imple-

mented in any programming language), whereas the

method by Bosse et al.14 depends on complete formal

specifications, even though they are meant for simulation.

Second, in the work of Bosse et al.14 the properties to be

checked play a passive role and are only considered after

simulations, whereas the properties we check (simulation

purposes) are also used to guide the simulations so that

only relevant simulations are performed.

Two other similar exceptions are the network simulator

Verisim16 and a multi-agent modeling of food poisoning.17

The approach taken by these works consists of running the

simulation normally, but checking linear-time properties in

the resulting execution traces. This kind of approach can

be implemented by the runtime verification notion of a

monitor, which is an extra component that is added to the

system in order to perform the verification. Verisim,16 for

instance, employs the MaC architecture18 to provide such

a monitor for its simulations. The precise nature of moni-

tors vary according to the kind of property to be analyzed.

But it turns out that linear-time properties are more suit-

able to this task, and thus most approaches employ some

variation of a linear-time logic, such as linear-temporal

logic (LTL).

However, the traditional semantics for LTL assumes an

infinite execution trace. Thus, it is unable to cope with

cases in which only finite traces are available. To solve

this problem, one may modify LTL to account for the case

in which traces are finite entities. This approach is fol-

lowed in a number of works.19–21

Our simulation purposes also express linear-time prop-

erties. However, they have particularities that are better

defined in the form of transition systems instead of logic

formulas. For example, the notion of events and state pro-

positions are different, and explicitly so. The possibility to

express both success and failure in the same structure is

another important point. Other requirements are examined

in Section 3.

Our technique, though quite different, nevertheless has

common characteristics with model checking.7 Most

importantly, both assume the existence of an explicit set

of states and transitions to be analyzed. In model checking

this set is examined exhaustively, so that a conclusive ver-

dict can always be given, provided that there are enough

computational resources. In our case, by contrast, only a

small part of the state-space is explored (i.e. those that are

reached by the simulations performed), and one can never

be sure of having explored every possible state, since the

simulator is a black-box. Moreover, both methods allow

the specification of a property of interest to be analyzed

with respect to a system, thus establishing a difference

between the model and the properties of the model. In

model checking such a property is typically given in terms

of some temporal logic, such as LTL. In our approach we

use simulation purposes instead.

Despite operating on explicit models of systems (i.e. all

possible transitions and states are considered), model

checking remains a technique that manipulates purely

980 Simulation: Transactions of the Society for Modeling and Simulation International 89(8)



abstract, formal, structures. This allows, in particular,

algorithms that do not check concrete executions, but

abstract ones. This can be achieved with the technique of

abstract interpretation,22 through which one considers a

super-set of all possible behaviors by ignoring selected

details in the specification (e.g. instead of considering all

particular integers for a variable x, only consider three

abstract cases: x< 0, x= 0 and x> 0). However, it is not

clear how such a technique could be applied in the verifi-

cation of simulations as described in this article. While the

formal descriptions employed could, in principle, be made

more abstract, part of our method depends on black-boxes

with interfaces whose internal details are not accessible.

Hence, it would not be possible to really abstract over con-

crete executions, since at least these black-boxes must be

simulated by concrete means.

Another technique used in model checking to reduce

the state-space to be explored is partial order reduc-

tion.23,24 It consists of using the fact that certain events are

commutative and, therefore, that certain orderings are

equivalent. With this realization, one then proceeds to

examine only a representative execution among equivalent

executions. In principle, it is possible to apply this tech-

nique to the method proposed in this article. Certain events

are completely under control of the verification algorithm,

which can thus select the order in which they happen. By

allowing the user to add a specification of which events

are commutative, one could then augment our algorithms

to consider only one order among the equivalent orders.

We have not pursued this idea, but it remains an interest-

ing topic for further research.

It is also worth mentioning a particular model checking

technique that limits itself to finite executions, called

bounded model checking.25–27 By limiting the length of

the executions that are examined, it is possible to perform

an efficient translation of the resulting problem to an

instance of the general SAT problem. Profiting from recent

developments in SAT solvers, this provides an efficient,

although not complete, model checking approach. The

state explosion problem, however, remains: the higher the

bound, the worse it gets. In this manner, though also con-

sidering finite executions, the technique we propose here

is fundamentally different. For example, the complexity to

consider very long execution lengths, but only few of

them, to us is polynomial, whereas to bounded model

checking this would remain exponential (because it con-

siders all executions of the given length, and not just a

few).

Schruben28 points out the simulation modeling and

analysis are often seen as two entirely different activities,

and argues that it would be more productive to design

models considering how they are supposed to be analyzed.

Our work, then, can be seen under this light, since our

models and their analyses are closely related.

The Discrete Event System Specification (DEVS)29

family of simulation formalisms provides conceptual fra-

meworks to put simulation under rigorous definitions. In

particular, DEVS defines the notion of experimental frame

as an entity which provides inputs to a simulation model

and judges its outputs. For the sake of uniformity, experi-

mental frames can be expressed with the same formalism

used to specify the simulation model itself. Experiments

run in this fashion, though, have no control over the simu-

lation once it is started, and can only evaluate its final

result. This is sufficient to devise certain optimization

techniques, by which several input parameters are tested

in order to find those that generate the best output accord-

ing to some optimization criteria.30 This contrasts with our

approach, since our technique allows simulations to be

guided on-the-fly, and the property of interest is given

declaratively (in the form of a simulation purpose), and

not programmatically, as is the case with experimental

frames.

Even though a DEVS model is meant for simulation, it

can sometimes be subject to formal verification through

model checking, provided that the model can be reduced

to a particular subset of DEVS such as FD-DEVS.31 Note,

however, that this is not a verification of the simulation

runs, but of the formal model itself, which is not our goal

in this work.

In our verification algorithms we shall need a prepro-

cessing procedure to calculate shortest distances from a

certain vertex in the graph induced by the specified simu-

lation purpose. To this end, we could use Dijkstra’s algo-

rithm.32 However, the edges in our graph all have weight

one (i.e. we count hops between a vertex and its succes-

sors), which permitted the development of a more specific

algorithm. The reason is that, in this case, it is not neces-

sary to keep a priority queue with unexplored vertices

(ordered according to their current distances), which needs

to be regularly re-ordered to account for updated entries. It

suffices to explore the vertices in a depth-first manner.

3. Automation of experiments

The formal approach that we present in the following sec-

tions is justified by the objective to which they should be

applied, namely, the automated analysis of simulation

models. Hence, in this section we examine the general

nature of these models, and what kinds of questions are

relevant for them.

Programs are usually designed in order to accomplish

something. That is to say, they are supposed to obey a spe-

cification (even if the specification exists only in the mind

of the programmer). If they indeed do so, they are deemed

correct. Otherwise, they are considered incorrect.

Verification, and formal verification in particular (where

one has formal specifications of the expected behavior), is
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thus concerned with determining whether or not programs

satisfy specifications, from which one may infer the cor-

rectness of the program.

Yet one may have a slightly different point of view on

the matter. In our case, we use programs as simulation

models. From our perspective of modelers, the model is

not necessarily supposed to accomplish something, for it

is merely a representation of a certain state of affairs,

which may be outside of our control. In investigating it,

we are thus not necessarily concerned with whether it is

doing its job correctly. Indeed, we may very well ignore

why the model was designed in the way it was. We just

want to discover what it can or cannot do. To this end, we

may also employ a specification. But it is the specification

of a hypothesis to be investigated, and which can be either

true or false. Note the crucial difference: when verifying a

program, the fact that the specification was violated indi-

cates a problem in the program, and thus it is always unde-

sirable; however, in our case, the fact that the hypothesis

is violated is not, in principle, an indication of a problem

either in the model or in the hypothesis itself. The judg-

ment to be made depends of our objectives in each partic-

ular circumstance. Are we trying to discover some law

about the model? In this case, if a hypothesis that repre-

sents this law turns out to be false, it is the hypothesis that

is incorrect, not the model. Are we trying to engineer a

model that obeys some law? In this case we have the

opposite, a falsified hypothesis indicates a problem in the

model. This view is akin to that found in empirical

sciences, in which scientists investigate hypothesis and

make judgments in a similar manner. In this respect, the

main difference is that the empirical scientist studies the

natural world directly, while we are concerned with mod-

els of nature.

More specifically, we are interested in simulation mod-

els of MASs. That is to say, those systems that can be

decomposed into a set of agents and an environment in

which these agents exist. Often, the description of environ-

ments is much simpler than that of the agents. When this

is the case, we can give a formal model for the environ-

ment and treat the agents therein as black-boxes.33

In this article we employ two different examples that

profit from this perspective. The first, very simple, models

only one agent, a dog, whose training we want to assess

through an environment which allows us to stimulate it in

various ways. As it is well known, dogs can be trained to

perform a number of things, and this example models some

of them. This first example is constructed along the text,

and is used to illustrate, in a simple and concrete manner,

the several concepts that form our approach as we intro-

duce them.

The second example is somewhat more complex and

serves to shed further light on the approach afterwards, as

well as to clarify details that might not have been fully

appreciated before. It consists of a model of an online

social network, where several persons exist and can inter-

act with each other through the features of a website.ii By

means of such a model, the operator of the website can

experiment with changes using simulations before apply-

ing them to the real website. We confine the construction

and analysis of this example to Section 9.

In both examples, the behavior of each individual agent

is likely to be complex, and if a model is given to them, it

probably will not be a simple one.34 But the environment,

on the other hand, can be described by some formalism

that merely define what operations can be performed on

agents, as well as relations among agents (e.g. using a pro-

cess algebra such as the π-calculus1), providing a much

more tractable model. The purely formal manipulations,

then, can be restricted to the environment model. An over-

view of such an architecture is given in Figure 1.

Note that this is analogous to an experimental scientist

working in his laboratory. The scientist is usually inter-

ested in discovering the properties of some agents, such as

animals, chemicals, or elementary particles. He has no

control over the internal mechanism of these agents: that

is why experiments are needed. But he can control every-

thing around them, so that they can be subject to condi-

tions suitable for their study. These scientific experiments

have some important characteristics:

• inputs should be given to agents under

experimentation;
• outputs should be collected from these agents;
• sometimes it is not possible to make some impor-

tant measurement, and therefore experiments often

yield incomplete knowledge;
• the experiment is designed to either confirm some

expectation (a success) or refute it (a failure);
• the experiment should last a finite amount of time,

since the life of the scientist is also finite;
• the experiment should be as systematic as possible,

though exhaustiveness is not required; the impor-

tant thing is to try as many relevant scenarios as

possible; in particular, the scientist may control

how to continue the experiment depending on how

the agents react;
• the experiment should define a clear course of

action from the start;
• the experiment can be a way to find out how to

achieve a certain end, after trying many things;

therefore, it must be performed in a constructive

manner, and not merely by deriving a contradiction;
• absence of a success does not necessarily mean that

there is no way to achieve a desired effect; hence, it

is convenient to know when something clearly indi-

cates a failure.

A simulation purpose is like such a scientist: it controls

the direction of the simulation and determines whether
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something constitutes a success or a failure by following sim-

ilar principles. An environment model, in turn, is similar to

the experimental setup, with its several instruments and

agents. The simulation purpose interacts with the environ-

ment model in order to achieve its aims. All of this is accom-

plished by considering these two artifacts as transition

systems.

In this way, the technique we present in this article

should be seen as a method to automate experiments

undertaken employing simulations of either natural or arti-

ficial phenomena. As Figure 2 shows, it depends on two

main interacting layers, namely, one of verification and

one of simulation. The details of the simulation layer are

domain-specific (in our case, we approached the problem

from a MAS perspective), but the verification method is

general and applicable to any discrete event simulation.

This article focus on the verification part and uses the

MAS simulation merely as an application example.

4. ATSs

While there may be many ways to specify the systems and

their properties (e.g. programming languages, process alge-

bras, logic), it is convenient to have a simple and canonical

representation to serve as their common underlying semantic

model. Here, we employ ATSs to this end, which are nothing

but transition systems with labels given to both states and

transitions.iii

In an ATS, events play a central role, and are further

divided into input events and output events. The former

represent events that may be controlled by the verification

procedure (i.e. may be given as an input to the simulator),

and the latter events that cannot (e.g. because they are the

output of some internal, and uncontrollable, behavior of

the simulator). The following definition formalizes this.

Definition 1 (Events). Let N be a primitive set of names.

An event is one of the following:

• an input event, denoted by ?n for some n∈N ;
• an output event, denoted by !n for some n∈N ;
• the internal event, denoted by τ, such that τ ∈� N ;
• the other event, denoted by U, such that U∈� N .

The U event above is a convenience to allow the speci-

fication of the complementary set of events possible in any

state. A notion of event complementarity is also useful for

later definitions.

Definition 2 (Complementary event). Let N be a primi-

tive set of names and e an event. Then its complementary

event, denoted by ec, is defined as

eC =
!n if e= ?n

?n if e= !n
τ if e= τ

U if e=U

8>><
>>:

Finally, we may define an ATS.

Definition 3 (Annotated transition system). An ATS is a

tuple hS,E,P, ! , L, s0i such that:

• S is the set of primitive states;
• E is the finite set of events;
• P is the finite set of primitive propositions;
• !: S ×E× S is the transition relation;
• for any s∈ S and e∈E, there are only finitely many

s0 ∈ S such that s !e s0 (i.e. finite branching);
• L : S �→P(P∪:P) is the labeling functioniv;
• for all s∈ S and all p∈P, if p∈ L sð Þ, then :p∈� L sð Þ

(i.e. the labeling function is consistent);
• s0 ∈ S is the initial state.

Note that the labeling function associates literals (for

any proposition p, its associate literal l is defined either by

l = p or l=:p; in the former case, we say it is a positive

literal, whereas in the latter we say it is a negative literal),

and not merely propositions, to the states. This allows the

Figure 1. Overview of the verification architecture based on simulations of MASs. The simulator takes two inputs: (i) a MAS,
composed by agent models and an environment specification; (ii) a simulation purpose to be verified. The simulator then produces
traces as outputs. Verification can be done at the simulation runtime level, as well as at the trace level (if the traces are recorded). In
this article, we only consider runtime verification, because this allows the simulations to be controlled in such a way that only those
relevant to the specified simulation purpose are actually performed.
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specification that some propositions are known to be false

in a state (i.e. :p), but also that other propositions are not

known (i.e. in case neither p nor :p are assigned to the

state). This last possibility is convenient for modeling

situations in which the truth value of a proposition cannot

be assessed, as it may happen in experimental situations.

Figure 3 shows an example of an ATS (M) in the con-

text of the first small example presented in Section 3. It

models the actions that an agent can perform (i.e. bark, sit

and salivate), the stimulation it can receive (i.e. the sound

of a whistle or bell) and the ‘‘clock’’ that determines when

time advances in the simulation (i.e. the !commit event,

which is optional and has a role that will be better

explained in Section 8.1). States are annotated with the lit-

eral h, meaning that the agent is hungry. From the verifica-

tion point of view, these annotations suffice. Of course,

each state inM is related to some simulator state, which

is much more complex, but this is all abstracted away at

the formal layer that we deal with in this article. The simu-

lator state is merely supposed to exist and to be capable of

receiving and providing information to the verification

layer, mainly in the form of events and propositions.

An ATS represents some system that can be in several

states, each one possessing a number of attributes, and a

number of transition choices. The system progresses by

choosing, at every state, a transition that leads to another

state through some event. Given an ATS, any such particu-

lar finite sequence of its events and states is called a run.

Definition 4 (Run). Let hS,E,P, ! , L, s0i be an ATS,

e0, e1, . . . , en ∈ E and s0, s1, . . . , sn ∈ S. Then the

sequence

(s0, e0, s1, e1, . . . , sn�1, en�1, sn)

is a run of the ATS. Let us denote this sequence by σ. Then

its length, denoted by σj j, is n+ 1. Moreover, we also

denote σ by σ0 :en�1 :sn, where σ0 corresponds to the sub-

run (s0, . . . , sn�1).
In the example of Figure 3, each run inM is a possible

simulation: maybe the agent will hear a whistle and even-

tually salivate, maybe it will hear a bell and sit, or maybe

it will follow some other sequence of events (not shown in

the figure).

Let us also define the set of all possible runs of an ATS,

which is used in later definitions.

Definition 5 (runs() function). LetM be an ATS. Then the

set of all runs ofM is denoted by

runs(M)

5. Simulation purposes

A simulation purpose is an ATS subject to a number of

restrictions. In particular, it defines states to indicate either

success or failure of the verification procedure, and requires

that, from every other state, one of these must be reachable.

Figure 2. The approach depends both on a verification and on a simulation layer. In this article, we focus on the verification part
(shaded on the diagram above), and use the simulation of MASs as an application example.
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Intuitively, it can be seen as a specification of desirable and

undesirable simulation runs. Each possible path in a simula-

tion purpose terminating in either success or failure defines

one such run. Formally, we have the following.

Definition 6 (Simulation purpose). A simulation purpose

(SP) is an ATS hQ,E,P, ˆ , L, q0i such that:

(i) Q is finite;

(ii) Success∈Q is the verdict state to indicate

success;

(iii) Failure∈Q is the verdict state to indicate failure;

(iv) L(qo)= L(Success)= L(Failure)= †;

(v) for every q∈Q, if there are q0, q00 ∈Q and e∈E

such that q ˆ
e

q and q ˆ
e

q00, then q0= q00 (i.e. the

system is deterministic);

(vi) for every q∈Q, there exists a run from q to either

Success or Failure.

These restrictions merit a few comments. First, require-

ment (iv) specifies that L(q0)= †, which ensures that the

initial state can always synchronize with the initial state of

another ATS. This is a way to guide the simulation from

the start. Second, condition (v) ensures that there are no

two identical event paths such that one leads to Success

and another to Failure. For example, if non-deterministic

transitions were allowed, we could have both the run

s0, e0, s1, e1, Successð Þ and the run s0, e0, s1,ð
e1, FailureÞ, which is inconsistent (i.e. because identical

situations must have identical verdicts). That this works

shall be proven later on. Finally, restriction (vi) ensures

that every state can, in principle, lead to a verdict.

Nevertheless, an inconclusive verdict might be issued

owing to the presence of cycles and the finite nature of

simulation runs.

Figure 3 shows an example of a simulation purpose,

SP. It defines a number of experiments that we wish to

perform on the agent modeled by M. Note that the runs

that lead to Success have as a common objective to make

the agent salivate: we want to check whether and how this

is possible. The simulation purpose SP also rules out a

run that in which the agent hears a bell and sits, perhaps

because we know that the dog has been trained to do this

and we are not interested in this particular behavior.

The role of simulation purposes in our approach is sim-

ilar to that of automata (especially deterministic finite

automata (DFA)) in language recognition. Both are graphs

used to detect certain properties in another object.

Nonetheless, it is important to note what is different

between them. In addition to the labeling of states, a simu-

lation purpose is different from a DFA in two other ways:

(a) in a simulation purpose, there are two different kinds

of ‘‘accept states’’ (we call these verdict states), namely,

Success and Failure; each one has a different role; (b) in a

simulation purpose, every state must be able to reach a

verdict state (otherwise it is a useless state for verifica-

tion), which is not the case in a general DFA.v

A visual depiction of both a general ATS and a simula-

tion purpose is given in Figure 3.

6. Synchronous product of an ATS
and an SP

The idea that a simulation purpose can guide which runs to

generate in another ATS is formalized by the notion of a

synchronous product between them. Since both events and

Figure 3. Examples of: (i) a general ATS,M; and (ii) a simulation purpose, SP. Transitions are annotated with events and states are
annotated with literals. The state labeled with S is Success, and the one labeled with F is Failure. The dots (. . .) denote thatM
continues beyond the states shown (it is possibly infinite). In this example,M models the possible stimulation and actions of an
agent (here, a dog simulation). The simulation purpose SP, in turn, checks whether the dog has learned that when a whistle is
blown, food is delivered to it (and therefore generates salivation).
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states contain relevant information for this guidance, a par-

ticular definition of synchronization for each case is first

required, as follows.

Definition 7 (Event Synchronization). Let

SP= hQ,Esp,Psp, ˆ , Lsp, q0i be a simulation purpose,

andM= hS, E, P, ! , L, s0i be an ATS. Moreover, let

• q1 ˆ
e1

q2 be a transition from SP; and
• s1 ˆ

e2
s2 be a transition fromM.

Then we define that events e1 and e2 synchronize if, and

only if, one of the following cases hold:

• e1 = ?n and e2 = !n for some name n;
• e1 = !n and e2 = ?n for some name n;
• e1 =U and there is no q0 ∈Q such that q1 ˆ

ec
2

q0; or
• e1 = e2 = τ.

Moreover, we denote the fact that e1 and e2 synchronize by

e1 ./ e2

The synchronization of input and output events is quite

natural and allows SP to choose specific events on M.

The other two cases merit a few more comments. The case

in which e1 =U specifies that it is a default transition, it

can only happen if there is no concrete alternative. That is

to say, if both q1 ˆ
U

q2 and q1 ˆ
?n

q3 are in principle possi-

ble, only the latter will actually take place. Finally, the

synchronization involving τ merely states that SP may

observe that some internal, unknown, event took place.vi

State synchronization is simpler. It merely allows the

simulation purpose to request certain literals to be present

in specific states.

Definition 8 (State synchronization). Let SP=
hQ,Esp,Psp, ˆ , Lsp, q0i be a simulation purpose, and

M= hS,E,P,! , L, s0i be an ATS. Moreover, let q∈Q

be a state from SP and s∈ S be a state fromM. Then we

define that q and s synchronize if, and only if,

Lsp(q)⊆ L(s)

Moreover, we denote the fact that q and s synchronize

by

q ./ s

Note, in particular, that if Lsp(q) is empty, no demand is

being made by SP, and therefore q can synchronize with

any state ofM.

We may then specify the overall synchronous product,

which, by synchronizing events and states, selects only the

runs relevant for the simulation purpose. The result of such a

product, then, is an ATS that contains only the relevant runs.

Definition 9 (Synchronous product of a simulation pur-

pose and an ATS). Let SP= hQ,Esp,Psp, ˆ , Lsp, q0i be a

simulation purpose, and M= hS,E,P,! , L, s0i be an

ATS. Then their synchronous product, denoted as

SP⊗M

is an ATSM0= hS0,E0,P0, !0 , L0, s00i such that:

• E0=E;
• P0=P;
• S0 and!0 are constructed inductively as follows

- initial state s00 = (q0, s0)∈ S0 and L0(s00)= L(s0).

- other states and transitions built using the fol-

lowing rulevii

q ˆ
e1

q0 s !e2 s0 (q, s)∈ S0 e1 ./ e2 s0 ./ q0

(q, s)!e2 0(q0, s0)
SYNCH

• if (q0, s0)∈ S0, then L0((q0, s0))= L(s0).

This product defines the search space relevant for our

algorithms. For this reason, we may refer to it as if it was

completely computed. Nevertheless, algorithmically it can

be built on-the-fly, and we shall profit from this in order

to perform verification.

Figure 4 highlights the runs that synchronize in the

example. Observe that while only one of the runs lead to

success (shaded continuously), both are used to define the

synchronous product. The⊗ transition is never taken,

because at that point the events ofM can all synchronize

with corresponding input and output events in SP.
Moreover, since SP⊗M is built on-the-fly, it is possible

that during verification the ?bell event is also never con-

sidered (if the algorithm is looking for the continuously

shaded run and happens to build it first).

We refer to runs of synchronous products as synchro-

nous runs.

Definition 10 (Synchronous run). A run in a synchronous

product is called a synchronous run.

In the next section we see that some such runs are spe-

cial, because they convey particularly important informa-

tion. For instance, in the example of Figure 3, the only

synchronous run that can lead to a desirable simulation is

the one shaded continuously, as shown in Figure 4:

((q0, s0), !whistle, (q1, s1), !commit, (q2, s2),

?salivate, (Success, s3))

For the sake of illustration, let us consider briefly what

it means to simulate this run. In the beginning, the simula-

tor is in its initial state, at s0. Then, the verification algo-

rithm requests the scheduling of the event !whistle.
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Afterwards the event !commit instructs the simulator to

actually simulate the scheduled events, which leads the

simulator to a new state in s2. The verification algorithm

then checks whether the agent can salivate through the

event ?salivate. Because agents are autonomous, it could

be the case that this event did not happen. In the example,

though, we assume that the event did happen, which leads

to the successful end of this particular simulation run.

7. Satisfiability relations

Given an ATS M and a simulation purpose SP, one is

interested in whetherM satisfies SP. There are a number

of ways in which such satisfaction can be defined, and we

call each one a satisfiability relation.viii

To begin with, we may be interested in whether the

simulation purpose is capable of conducting to a state of

either success or failure. This is to be interpreted as the

possibility of constructing an experiment, which can be

used as evidence either in favor or against some hypoth-

esis. This can be done in either a weak manner or a strong

manner. In the weak manner, at each step in the experi-

ment one is concerned only with the possibility of pro-

ceeding to a next desirable step, without forbidding other

courses of action. In the strong manner, on the other hand,

at each step in the experiment one may forbid certain

actions, so that if they are possible the step is considered

useless. These notions are formalized as follows.

Definition 11 (Feasibility). Let SP be a simulation pur-

pose, M be an ATS and R⊆ runs(SP⊗M). Then we

define that:

• SP is weakly feasible with respect to M and R if,

and only if, there exists a synchronous run (called

weakly feasible run) r ∈R such that its last state

(q, s) is such that q= Success; otherwise, we call it

weakly unfeasible;
• SP is strongly feasible with respect toM and R if,

and only if, there exists a synchronous run (called

strongly feasible run) r ∈R such that (i) its last

state (q, s) is such that q= Success and (ii) there is

no state (q0, s0) in r such that (q0, s0) ˆ
e

(Failure, s00)
for some e and s00; otherwise, we call it strongly

unfeasible.

Moreover, if one of the two cases above hold, we say

that SP is feasible with respect toM, and the correspond-

ing run is called feasible run.

In the example of Figure 4, SP is strongly feasible (as

well as weakly feasible). The runs shaded continuously

show how to compute the strongly feasible run.

Definition 12 (Refutability). Let SP be a simulation pur-

pose, M be an ATS and R⊆ runs(SP⊗M). Then we

define that:

• SP is weakly refutable with respect toM and R if,

and only if, there exists a synchronous run (called

weakly refutable run) r ∈R such that its last state

(q, s) is such that q=Failure; otherwise, we call it

weakly irrefutable;
• SP is strongly refutable with respect to M if, and

only if, there exists a synchronous run (called

strongly refutable run) r ∈R such that (i) its last

Figure 4. In this example, the simulation purpose SP guides the simulation so that a whistle stimulus is delivered to the agent,
then anything can happen, and finally the organism salivates. There are other possibilities that follow from theM and SP, when
considered individually, but only the shaded runs can synchronize. There are rules that determine how events and states
synchronize. The dashed shade (on transitions marked with ?bell and !bell) denotes runs that could not advance towards any
verdict state, whereas the continuous shade (on the remaining shaded transitions) indicates runs that led to desirable
simulations.
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state (q, s) is such that q=Failure and (ii) there is

no state (q0, s0) in r such that (q0, s0) ˆ
e

(success, s00)
for some e and s00; otherwise, we call it strongly

irrefutable.

Moreover, if one of the two cases above hold, we say that

SP is refutable with respect toM, and the corresponding

run is called refutable run.

In the above definitions, the set R of runs to consider is

left as a parameter because the notions of feasibility and

refutability are applicable even in the case where not all

possible runs (i.e. runs(SP⊗M)) can be known. Later

we show how this can be used to perform verifications

with respect to the incomplete observations obtained

through a simulator.

A simulation purpose can be both feasible and refutable

with respect to the same ATS. In such a case, it merely

means that there are experiments that lead to different ver-

dicts, which is not a contradiction.ix

It might be interesting, though, to know whether all of

the experiments that follow from a simulation purpose lead

to the same verdict. In this case, we are interested in estab-

lishing that all courses of action are either acceptable or

unacceptable. This can be useful, for instance, if the simu-

lation purpose is to model a protocol to be followed, and

which, therefore, should always lead to some desirable

state.

Definition 13 (Certainty). Let SP be a simulation purpose,

M be an ATS and R⊆ runs(SP⊗M). Then we define

that SP is certain with respect toM if, and only if, every

run in R terminates in a state (q, s) such that q= Success.

Definition 14 (Impossibility). Let SP be a simulation pur-

pose, M be an ATS and R⊆ runs(SP⊗M). Then we

define that SP is impossible with respect to M if, and

only if, every run in R terminates in a state (q, s) such that

q=Failure.

Clearly, a simulation purpose only has value if it is

capable of reaching some of its terminal states. Depending

on the structure of the ATS to be verified, this might not

happen in their synchronous product. In such a case the

simulation purpose is incapable of providing information

about the ATS. Therefore, there is an important notion of

informativeness that we wish to attain.

Definition 15 (Informativeness). Let SP be a simulation

purpose and M be an ATS. Then we define that SP is

informative with respect to M if, and only if, it is either

feasible or refutable. Otherwise, SP is said to be

uninformative.

We claimed in Section 5 that simulation purposes avoid

non-determinism in order to provide consistent verdicts.

We shall now prove this.

Proposition 1 (Consistency). Let SP be a simulation pur-

pose, M be an ATS and Prod =SP⊗M. Moreover, let

t1 and t2 be runs of Prod which share a subrun t and an

event e such that

• t1 = t:e:(q1n, s1n);
• t2 = t:e:(q2n, s2n).

Then, we have that q1
n = q2n.

Proof. Let n� 1 be the length of subrun t, and

(qn�1, sn�1) be its last state. By hypothesis,

(qn�1, sn�1)!e (q1n, s1n) is a transition in Prod. Then,

because of the determinism requirement on simulation

purposes, it follows that there exists exactly one transition

in SP from qn�1 using the event e, namely, qn�1 ˆ
e

q1n.

Therefore, if (qn�1, sn�1)!e (q2n, s2n) is also a transition in

Prod, it must be the case that it arises from the synchroni-

zation with same transition in SP, which implies that

q1
n = q2n. h

Note that this result does not depend on determinism

concerningM, but only SP.

8. Verification algorithms

The satisfiability relations presented in the previous sec-

tion can be verified by analyzing the synchronous product

given by Definition 9. The required algorithms, moreover,

are all very similar: they all consist in a depth-first search

on this product. For this reason, we first present and ana-

lyze extensively the algorithm for checking feasibility

(Algorithm 1). By a trivial modification of the input, the

same algorithm can be used to check refutability. We then

define the algorithm for checking certainty (Algorithm 2),

which is very similar to Algorithm 1, but do require some

subtle adjustments. Again, by a trivial modification of the

input, Algorithm 2 can also be used to check the remain-

ing impossibility relation. It is therefore only necessary to

provide these two algorithms to verify all the satisfiability

relations defined previously. Both algorithms require the

existence of a simulator interface to interact with, so we

begin by introducing it.

8.1. Simulator interface

Before we proceed to the verification algorithms them-

selves, it is necessary to introduce a way for them to access

the simulation infrastructure. We do this here by specify-

ing a number of operations that the simulator must make

available to the verification algorithms. This means that

any simulator that provides this interface can be used to

implement the verification technique presented here.

The required simulator interface is composed of the fol-

lowing operations.

• GoToState (sim): Makes the simulation execution

return to the specified simulation state sim, which

must have taken place previously.
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• CurrentState(): Returns the current simula-

tion state.
• ScheduleStep(e): Schedules the specified

event e for simulation.
• Step(): Requests that all scheduled events get

simulated.
• isCommitEvent(e): Checks whether e is an

event that serves as a signal of when it is appropri-

ate to call the Step() operation. Such an event

can be thought of as a clock used by the simulator.

We have seen this been used in the simple example

constructed in the previous sections. If the simula-

tor does not employ any such special event, then

this operation always returns true. For variety, this

will be the case in the example of the next section.
• Successors(ATS, s): Calculates the finite set

of all transitions in the specified ATS that can be

simulated and that have the state s as their origin.

This operation is necessary to allow the on-the-fly

construction of the ATS.

8.2. Feasibility verification

Algorithm 1 implements feasibility verification. In addi-

tion to the simulator operations described above, it also

assumes that the following simple elements are available.

• CanSynchðq ˆ
f

q0, s!g s0Þ: Checks whether the

two specified transitions can synchronize according

to Definition 9.
• depthmax: The maximum depth allowed in the

search tree. Note that since simulations are always

finite (i.e. they must stop at some point), we can

assume that depthmax is finite.
• max_int: A very large integer (in most common

programming languages, this can be the maximum

integer available, thus the name), which is used to

indicate distances that can be considered as infinite.

It is assumed that in a simulation purpose all short-

est paths from any state to verdict states are less

than max_int.

The remaining procedures required for the algorithm are

given explicitly after it.

Let us explain informally how the algorithm works. For

a mathematically rigorous analysis of its correctness and

complexity, the interested reader may consult Appendix A.

How the algorithm works First of all, a preprocessing

of the simulation purpose is required. This consists of cal-

culating how far from Success, the desired verdict state,

each of the states in the simulation purpose is. By this pro-

vision, we are able to take the shortest route from any given

simulation purpose state towards Success. The importance

of such a route is that it avoids cycles whenever possible,

which is crucial to prevent the algorithm from entering in

infinite loops later on. For every simulation purpose state q,

then, its distance to the desired verdict state is stored in

dist½q�. However, if one is checking strong feasibility,

dist½Failure� is set to �1, so that later the algorithm will

always find a successor that leads to Failure before any

other successor (in order to discard it promptly, and thereby

respect the strong variant of feasibility).

Once this preprocessing is complete, the algorithm per-

forms a depth-first search on the synchronous product

SP⊗M. The central structure to achieve this is the stack

SynchStack. Every time a successful synchronization

between a transition in SP and one in M is reached,

information about it is pushed on this stack. The pushed

information is a tuple containing the following items:

• The state q of SP that synchronized.
• The state s ofM that synchronized.
• The event e ofM that synchronized. This will be

used later to calculate a synchronous run.
• The state p of SP that came immediately before the

one that has been synchronized (i.e. p ˆ
e

q). Again,

this will be used later to calculate a run.
• The state of the simulation, sim, which can be

extracted from the simulator using the

CurrentState() function.
• The set of transitions starting at q (i.e.

Unexplored = Successors (SP, q)) which have

not been explored yet.
• The depth in the search tree.

In the beginning, we assume that the initial states of

both transition systems synchronize and push the relevant

initial information on SynchStack. Thereafter, while there

is any tuple on the stack, the algorithm will systematically

examine it. It peeks the topmost tuple, (q, s, e, p, sim,

Unexplored, depthÞ, and access its Unexplored set. These

are simulation purpose transitions beginning in q which

have not yet been considered at this point. The algorithm

will examine each of these transitions while: (i) no syn-

chronization is possible (i.e. the variable progress is false);

and (ii) the search depth is below some maximum limit

depthmax. In case (i), the rationale is that we wish to pro-

ceed with the next synchronized state as soon as possible,

so once we find a synchronization, we move towards it. If

that turns out to be unsuccessful, the set Unexplored will

still hold further options for later use. In case (ii), we are

merely taking into account the fact that there are situations

in which the algorithm could potentially go into an infinite

depth. For instance, SP could contain a cycle that is

always taken because no other synchronizations are possi-

ble starting from the beginning of this cycle. The depth

limit provides an upper-bound in such cases, and forces
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the search to try other paths which might lead to a feasible

run, instead of an infinite path.

In each iteration of this while loop, the algorithm selects

the best transition q ˆ
f

q0 available in Unexplored. This

selection employs the preprocessing of the simulation

purpose, and merely selects the transition that is closer to

the goal. That is to say, q0 is such that there is no q ˆ
f

q00

such that dist½q00�< dist½q0�. As we remarked above, this

is intended to guide the search through the shortest path

in order to avoid cycles whenever possible. Once such a

transition is chosen, we may examine all possible

transitions of M starting at s, the current synchronized

state.

At this point, the simulator interface will be of impor-

tance. For each such transition s !g s0, we have to instruct

the simulator to go to the simulation state sim in the peeked

tuple. This simulation state holds the configuration of the

structures internal to the simulator that correspond to the

transition system state s. The algorithm may then request

that the event g be scheduled. Then, if the event turns out

to be a commit event, the simulator is instructed to perform

one simulation step, which implies in delivering all the
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Procedure Preprocess(SP, v)
Input: A simulation purpose SP = 〈Q,E, P,�, L, q0〉 and a verdict state v.
Output: A function dist : Q −→ Z such that, for every q ∈ Q, dist[q] is the minimal distance

between q and v.
1 let visited[ ] be a map from states to Boolean values;
2 let dist[ ] be a map from states to either integers or nil ;
3 foreach q ∈ Q do
4 visited[q] := false;
5 dist[q] := nil ;

6 PreprocessAux(SP, q0, v, dist[ ], visited[ ]);
7 foreach q ∈ Q do
8 visited[q] := false;

9 PreprocessAux(SP, q0, v, dist[ ], visited[ ]);
10 return dist[ ];

Procedure PreprocessAux(SP, source, v, dist, visited)
Input: A simulation purpose SP = 〈Q,E, P,�, L, q0〉, a source ∈ Q, a map dist[ ], a map visited[ ]

and a verdict state v.
1 visited[source] = true;
2 if source = v then
3 dist[source] := 0;

4 else
5 let min := nil ;
6 if Successors(SP, source)= ∅ then
7 min := max int ;

8 else

9 foreach source
f� q′ do

10 if visited[q′] = false then
11 PreprocessAux(SP, q′, v, dist[ ], visited[ ]);
12 if dist[q′] �= nil then
13 if min = nil then
14 min := dist[q′]

15 else if dist[q′] < min then
16 min := dist[q′];

17 if min �= nil ∧min �= max int then
18 min := min+ 1;

19 dist[source] := min;

Procedure RemoveBest(Unexplored, dist)

Input: A set Unexplored of transitions of a simulation purpose and a map dist[] from of states to
integers.

Output: A transition in Unexplored.
1 let q

e� q′ ∈ Unexplored such that there is no q
e� q′′ ∈ Unexplored with dist[q′′] < dist[q′];

2 return q
e� q′
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scheduled events. This will put the simulator into a new

state, which will correspond to s0 in M. Then we may

check whether q ˆ
f

q0 and s !g s0 can synchronize. If it is

possible, then q0 is Success, Failure or another state in Q.

In the first case we have found the feasible run we were

looking for and we are done. The second case only matters

if we are checking the strong variant of feasibility, in

which case we must discard the current synchronization

state (by popping it from SynchStack and going to the next

one) because it has led to a Failure and thus according to

the definition of strong feasibility cannot be part of the

strong feasible run. In the third case, we merely push the

current (q0, s0, g, q, sim0, unexplored0, depth0) tuple on

SynchStack for later analysis and signal that the search can

move on by setting progress to true.

If the algorithm abandons a search branch because its

depth is greater than or equal to depthmax, the verdict in

case of failure is set to be INCONCLUSIVE, since it is pos-
sible that there was a feasible run with length greater than

depthmax + 1 that was not explored. Moreover, it is possible

that after examining all transitions in Unexplored, none syn-

chronized (i.e. the variable progress is still set to false). If

this happens, the tuple is popped from SynchStack because

by then we are sure that no feasible run will require it.

Finally, if SynchStack becomes empty, it means that no

run in SP up to depthmax leads to a feasible run. So we

return a verdict which will be FAILURE if depthmax was

never reached, or INCONCLUSIVE otherwise.

How the algorithm handles cycles We have just said

that a preprocessing of SP is required in order to deal with

its cyclic paths. By this provision, we are able to determine

at any state of SP which successor is closer to Success, the

desired verdict state. Since any cyclic path from a state is

longer than an acyclic one from the same state, this suffices

to avoid cycles whenever possible. That said, let us see how

this minimum distance is calculated by Preprocess().

The calculation is divided between the main

Preprocess() procedure and the auxiliary

PreprocessAux() procedure. Indeed, Preprocess()
merely: (i) initializes two maps, �isited½ � and dist½ �, which
store whether a state has been visited and the distance from a

state to the desired verdict, respectively; and (ii) call

PreprocessAux() twice. In the first call, all of the acyc-

lic paths are examined and have the corresponding dist½ � val-
ues set. In the second call, using this partial dist½ �,
PreprocessAux() is then capable of computing the dis-

tances for the states in cyclic paths as well.

PreprocessAux() is a function that for a given

source state recursively examines all of its successor states

q0 to determine which one is closer to the desired verdict

state �. Once the closer successor q * is found, the func-

tion merely sets dist½source� : = dist½q * �+ 1. The recur-

sion base takes place in three situations. First, when the

source being examined is actually the verdict state �, and
therefore its distance is depth * . Second, if the source

being considered has no successors, and thus cannot get to

�, which implies that dist½source� is infinite. Third, when
all successors of source have already been visited.

In the latter case it means that the procedure has found

a cycle. Moreover, because of the recursive nature of the

procedure, none of these successors q0 will have their

dist½q0� set yet, so that dist½source� remains nil, which indi-

cates that source is in a cycle. However, when

Preprocess() calls PreprocessAux() a second

time, these dist½q0� will be set, so that even in the case in

which source is in a cycle, we are able to assign it a dis-

tance. This distance, indeed, is nothing but the sum of an

acyclic path and the length of the corresponding cycle. That

is to say, for any source located in a cyclic path, the proce-

dure assigns it the shortest distance considering a way to

get out of the cycle. Since by Definition 6 there is always

an acyclic path towards a verdict state, it is always possible

to calculate this distance. This does not prevent Algorithm

1 from taking such a cycle infinitely, but merely provides

Procedure BuildRun(SynchStack, q∗, depth∗)
Input: A search stack SynchStack, the last simulation purpose state q∗ to include in the run to be

built, and the depth depth∗ of this state.
Output: A synchronous run.

1 let Run be a list initially empty;
2 while SynchStack �= ∅ do
3 Pop (q′, s′, f, q, sim,Unexplored, depth) from SynchStack;
4 if q′ = q∗ ∧ depth∗ = depth then
5 Put (q′, s′) at the beginning of Run;
6 Put f at the beginning of Run;
7 q∗ := q;
8 depth∗ := depth∗ − 1;

9 return Run;
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guidance to avoid it whenever possible. This guidance is

enforced by the RemoveBest() procedure used by

Algorithm 1. However, it might be the case thatM never

gives the chance for SP to get out of the cycle. In this case,

the algorithm proceeds until the search reaches the maxi-

mum depth depthmax. When this limit is reached, the partic-

ular search branch under examination is abandoned and the

algorithm backtracks to try another branch. If no branches

are left, the algorithm terminates and returns the

INCONCLUSIVE verdict. This leads us to the next topic.

Hints on termination The complete treatment concern-

ing termination is given in Appendix A. Let us nonetheless

give some hints on this matter here. The termination of

Algorithm 1 depends on whether SP is cyclic. If it is not,

termination is always guaranteed because only finitely

many states of SP are visited during the depth-first search

(i.e. no previously visited state of SP would be revisited).

However, if there are cycles in SP, it would in principle

be possible that infinitely many states were to be visited

(since the same state in SP could synchronize infinitely

many times with states in M), which of course would

compromise termination.

In such a cyclic case, the crucial factor that determines

termination is the value of depthmax. Since depthmax is

assumed to be finite (i.e. the search is bounded), termination

is guaranteed, because: (i) there are only finite many paths

in SP of length depthmax; and (ii) each such path is used

only once. If the search was not bounded in this manner,

such a guarantee could not be given. But, as explained pre-

viously, by their very nature simulations must be finite, so

the assumption of a bounded search is actually necessary.

Hints on complexity The exact analysis of the com-

plexities is provided in Appendix A. Here it suffices to say

that the complexity in space is polynomial with respect to

depthmax and other parameters, and the complexity in time

is exponential with respect to depthmax. This exponential

complexity in time arises partly from the fact that the

algorithm do not keep track of the visited states ofM and

partly from the possibility that there are infinitely many

states in M. Note also that if the algorithm either

employed a breadth-first search instead of a depth-first

search or recorded visited states, the efficient use of space

would be compromised.

8.3. Refutability verification

To verify refutability, one must look for a run leading to

Failure instead of a run leading to Success. Therefore, it

suffices to swap the Success and Failure states in the simu-

lation purpose and then apply Algorithm 1.

8.4. Certainty verification

The verification of certainty can be achieved by a slightly

modified version of Algorithm 1. Like for refutability, it

should search for the Failure state. However, when it does

find it, the final verdict is FAILURE, because by

Definition 13 there should be no run leading to Failure.

Moreover, for every visited transition q ˆ
f

q0 of SP, there
must be a synchronizable s!g s0. Otherwise, there would

be a terminal state (q0, s0) such that q0 6¼ Success, which is

forbidden by Definition 13. Finally, when the outer loop

terminates, the verdict to be returned is either SUCCESS
or INCONCLUSIVE (in case the search depth reached the

maximum allowed), because no counter-examples have

been found. Algorithm 2 incorporates these changes. The

complexities remain the same, because these modifications

do not change the arguments used to calculate them.

8.5 Impossibility verification

To verify impossibility, one must find that all runs in the

synchronous product lead to Failure. It suffices then to

swap the Success and Failure states in the simulation pur-

pose and then apply Algorithm 2. This is similar to the

verification of refutability, which can be accomplished by

Algorithm 1 through such a swap.

9. Another example

Recall from Section 3 that we are interested in the simula-

tion and verification of MASs. Let us then continue one of

the examples suggested there, namely, that of modeling

and analyzing an online social network.

There are, of course, a large number of events to

account for in such a network. For simplicity, though, we

will only consider the following:

• !guii: a graphical user interface i is chosen for the

website;
• !ad

ag
i : advertisement i is delivered to agent ag;

• ?buy
ag
i : agent ag buys product i;

• ?msgag2
ag1

: agent ag1 sends a message to agent ag2.
• ?app

ag
i : agent ag runs application i; here, an appli-

cation is any separate sub-program that the website

makes available, such as a game.

Similarly, a number of propositions about the states can be

defined. For the example, these suffice:

• mag: true if and only if agent ag likes music;
• yag: true if and only if agent ag is young.

From an implementation point of view, we require three

different interacting parts:
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• an implementation the website model, which defines

all of the operations that the website can perform on

agents, as well as the reactions to their actions;
• an implementation of the first agent, which receives

input from and produces output to the website;
• a similar implementation of the second agent.

That is to say, it is a MAS such that the website is an envi-

ronment in which the agents exist and through which they

interact. The exact manner in which these parts are built

can vary, provided that their simulation ultimately pro-

duces discrete events and annotated states. For example,

one could implement all of these as traditional programs

(e.g. in C, Java) or as special purpose programs (e.g.

executable formal specifications). In any case, we should

obtain anM such as that of Figure 5.

Furthermore, let us assume that the objective of this

model is to analyze marketing strategies for a product A

targeted to young music lovers. In this way, a possible

simulation purpose could be informally described as the

following question: is there a way to setup the website and

deliver advertisement so that users will buy the advertised

product? Formally, we could have something like the

simulation purpose shown in Figure 6. Note that the event

?msgag2
ag1

is not present in this simulation purpose, although

it is probably a frequent event in such a social network.
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This means that the event is not considered relevant for

the task at hand, and thus a large part of the possible simu-

lations can be safely ignored.

We may then investigate whether SP is feasible over

M. That is to say, whether it is possible to convince users

to buy a product by following some marketing strategy. A

positive verdict would not only suggest that it is possible,

but would also provide one such strategy. The experimen-

ter, then, could use this strategy in the actual social net-

work, not the simulated one. As long as the modelM is a

sufficiently accurate representation of reality, such an

approach would provide a way to evaluate several ideas

before applying them in the real system, which not only

would save resources, but would also prevent bad

Figure 5. A partial view of the example’sM, which potentially has an infinite number of states and transitions (and even if finite,
the branching nature of the structure makes the state-space exponentially large). Dots (. . .) denote that the structure continues
beyond what is shown. The shaded runs are special: the continuous one (below s0) is a successful simulation (the basis for a feasible
run ), whereas the dotted one (above s0) is a failed simulation (the basis for a refutable run ). All states are assumed to be annotated
with m1, y1, m2, y2

� �
, which is not shown in the image (to avoid clutter).
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strategies from causing damage (e.g. by submitting real

users to an unbearable amount of advertisement).

The investigation of SP proceeds by building the syn-

chronous product SP⊗M on-the-fly. That is to say, at

each state of SP⊗M, the simulator builds the next possi-

ble states and take the one which is relevant for the

satisfiability relation being checked. Note that this implies,

in particular, that it may not be necessary to build the

whole synchronous product. In the example, since we are

checking feasibility, the algorithm can safely terminate as

soon as a feasible run is found. Figure 7 shows the full

synchronous product. However, provided that one started

the search by the !gui1 event, only the continuously shaded

path would be actually built and simulated. On the other

hand, if we wanted to check for certainty, the whole of it

would have been built, and the verification would actually

fail, since the synchronous product also contains an refuta-

ble run.

This example exploits some of the key features of our

technique:

• Social models are naturally complex and it would

be unrealistic to consider exact and exhaustive ana-

lyzes. Hence, using simulations to partially explore

them is preferable.
• Verdicts are calculated in a constructive manner,

which allows the provision of instructions to

achieve the verdict (and, therefore, replicate the

result on the real system).
• Much of the model is irrelevant for some verifica-

tion tasks. In the example, the event !msgag2
ag1

was

not pertinent for the verification. It is convenient

then that the property to be verified contains this

information explicitly and is capable of avoiding

some irrelevant simulations.
• Some forms of failure are explicit. In the example,

if the agent buys the competitor product B, the mar-

keting strategy is considered to have failed for that

agent, and therefore one can immediately proceed

to the analysis of another agent.

From the purely formal definitions given in previous

sections, it is not clear what exactly is the difference

between input and output events. This example helps to

shed some light on this. First, it should be noted that the

distinction between input and output events is a matter of

Figure 7. The synchronous product SP �M. Note that this is can be seen as a sub-graph ofM with the transitions recording the
event synchronizations. The construction of the synchronous product is a way to select a finite set of runs onM. All states are
assumed to be annotated with m1, y1, m2, y2

� �
, which is not shown in the image (to avoid clutter).

Figure 6. The example’s simulation purpose . We assume only
two agents for this example, and only one competing product, B.
A possible run could be as follows: we implement GUI 1

(q0 ˆ
?gui1

q1), deliver advertisement 1 to agent 2 (q1 ˆ
?ad21

q3), and

then realize that agent 2 indeed buys product A(q3 ˆ
?buy2A

success).
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convention: one could very well adopt the inverse termi-

nology. The important thing is just that there have to be

complementary classes of events, because they have differ-

ent roles inM. One of these classes of events is under the

complete control of the experiment. In the example, this is

the class of events corresponding to the website: we wish

to be free to test new user interfaces, deliver ads to visitors,

and so on. This can be seen inM when it requests (i.e. out-

puts an order) that the simulator performs, say, event !gui1.

The other class of events models the possible actions of

agents outside our control, which may never happen, such

as whether a user will buy the advertised product. Again,

this is present inM, where the event ?buy2A asks (i.e. waits

for an input) the simulator whereas agent 2 bought product

A. In practice, this means that: (i) the implementation of

the simulated user cannot be forced to act (e.g. perhaps

because it is a black-box implementation of user behavior),

but only be stimulated and observed; and (ii) the imple-

mentation of the website simulation must be such that we

can force it to take any of its possible actions at any time.

The example mirrors real life: developers really have total

control over the websites they program, but can only sti-

mulate and observe their users. In the simulation, these dif-

ferences must be enforced by the implementations of the

Successors() and ScheduleStep() operations of

the simulator interface, which generates M and handles

the events as they are found there, respectively (see

Section 8.1).

Note that the events found in SP do not give or receive

orders to or from the simulator. They are there merely to

guideM, and this guidance is achieved by synchronizing

both transition systems. However, for the sake of unifor-

mity and simplicity, we defined event synchronization

using the traditional idea of complementarity between

input and output events.

We have chosen this simple example in order to stay

focused on the simulation and verification techniques pro-

posed. However, more complex and detailed examples can

be found in the work of da Silva.11 The examples shown

there explicitly use agent and environment models to gen-

erate M, whose formalisms are out of the scope of the

present work, but can be found partly in da Silva and de

Melo33,34.

10. Conclusion

In this work we have seen how to check whether an ATS

(describing a system of interest) conforms to a simulation

purpose (describing a property of interest) in a number of

different and precisely defined senses. In this way, our

method operates on formal structures in order to verify

something: it is thus a formal verification approach.

Nevertheless, there is a crucial counterpoint to this formal

aspect: the ATS under verification is, itself, representing

the results of a simulation, whose internal details are not

available for the verification procedure, and therefore,

from our algorithmic perspective, can be seen as not for-

mal. Verification and simulation interact by means of a

simulator interface, which provides the required elements

for the construction of transition systems, but do not reveal

how they were generated.

This interplay between verification and simulation is a

distinctive feature of our approach to the analysis of simu-

lations. The required simulator interface is simple to

implement: in essence, it merely requires that (i) simula-

tions proceed from state to state by discrete events; and

that (ii) simulation states may be saved and restored. Our

technique, therefore, has clear practical applications. We

are experimenting with it in our own simulator, but owing

to this simple interface requirement, it should also be pos-

sible to incorporate it in other existing platforms.

There is also an interesting theoretical property in this

approach: as long as it depends on a black-box (i.e. the

simulator), the verification procedure can never provide a

guarantee that some event cannot be observed. The reason

is simply that any analysis of the black-box depends on

extracting finite runs from it, and since nothing dictates

the choices of the black-box, it can always be the case that

a hitherto unobserved event takes place just after our last

observation. This argument holds for any observation of

finite length, however long. Note that this limitation is

inherit to the problem of analyzing simulations, and not a

difficulty pertaining to our specific solution.

One may then wonder what is the use of any such

method of analysis. The answer, though, is equally simple.

While one cannot guarantee the impossibility of an event,

one can guarantee the possibility of an event, for to

observe it is to prove that it is possible. Since this much

can be done, it follows immediately that it is worth explor-

ing simulations systematically in the search of what is pos-

sible. In fact, the whole point of simulating something is

to do this; our contribution concerns the automation of

such a search, which is often carried out manually by set-

ting up initial conditions.

Furthermore, even if one cannot guarantee that a certain

event will never happen, it is better to test whether it may

or may not happen, for at least by doing this something

can be discovered (e.g. that the event does not happen

always, a case which is easy to detect). This judgment, the

reader will recognize, is nothing but the common sense of

empirical sciences, in which nothing can be proved defini-

tively, but which nonetheless produce useful theories. To

put this philosophical point of view in an formal frame-

work is part of we set out to do in Section 3, and thus is

also a contribution of this work.

The article dealt with low-level representations only, in

the form of transition systems and algorithms to manipu-

late them. The reason for this is that this is the simplest

way we could find to formalize the fundamental concept
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of our approach: that simulations explore state-spaces and

that these explorations can be systematically guided.

Accordingly, our worry here is with simple semantic mod-

els, which provide the basis upon which various other

abstractions could be built. It is assumed that whatever

high-level abstraction is used, it can be translated to ATSs

and simulation purposes.

Our implementation of the technique is out of the scope

of this article, because it depends on various other abstrac-

tions to model MASs. It is worth to point out, though, that

we employ the π-calculus1 process algebra to formalize

the environment in which agents exist, whereas the agents

themselves are (from the simulation and verification per-

spective) black-boxes that implement certain interfaces

(recall the general architecture shown in Figure 1). Thanks

to the operational semantics of the π-calculus, it is possible

to translate (on-the-fly) our high-level representation into

an ordinary ATS and explore it using a simulation inter-

face as described in Section 8.1. For more details, see da

Silva11 and da Silva and de Melo.33

Our particular choice of high-level abstraction, how-

ever, is not essential to the application of the technique.

One may envisage the use of many other things, both for-

mal and informal. On the formal front, other process alge-

bras, such as CCS1 and CSP,35 could be used to generate a

state-space; DEVS29 could provide the basis for the gener-

ation of simulation traces as well; temporal logic formulas,

in turn, could be used to generate simulation purposes,

provided that they are properly adjusted to handle finite

execution traces (see Section 2 for a discussion on the

problems with traditional temporal logics). While a formal

simulation purpose is necessary, formalisms are not essen-

tial for the definition of the simulation state-space. It

would be perfectly possible to simply implement a simula-

tion model using any ordinary programming language (e.g.

C, Java) in such a way that transitions generate observable

events and states. Existing platforms, such as RePast3 and

Mason,4 could adopt this strategy to strengthen their analy-

tical capabilities without much effort. Indeed, the lack of

sophisticated experiment automation tools is a common

shortcoming6 in MAS simulators (which largely rely in

usual programming languages to define simulation mod-

els) that could be partly addressed by adopting such an

approach.

It is also possible to consider different satisfiability

relations. The ones we provided (i.e. (weak and strong)

feasibility, (weak and strong) refutability, certainty and

impossibility) are those which we found most natural and

useful, but one may devise others, more suitable to differ-

ent applications. For example, instead of looking for a sin-

gle feasible run, as required by the feasibility relation, one

may be interested in finding a few of them. Or one may

desire an even stronger notion of strong feasibility that

would rule out any refutable run in the synchronous prod-

uct. These new relations would require adjustments on the

algorithms, though their fundamental mechanisms could

remain the same (much like the two algorithms we gave,

which are very similar).

Finally, it is worth emphasizing that the proposed verifi-

cation framework is not limited to the simulation of MASs,

which motivated our research. It was developed to address

such a concern, but ATSs are general formal structures to

represent states and transitions, and therefore can be used

to formalize anything that can be put in their terms. This is

an unexpected but fortunate consequence of our efforts.
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Notes

i The word ‘‘simulation’’ carries different meanings to differ-

ent people. Owing to the different background in formal

methods that readers may have, a clarification is in order.

By ‘‘simulation’’ we do not mean a formal relation among

two transition systems, such as what Milner1 employs. As

we explain, in this article a ‘‘simulation’’ refers, broadly, to

an abstract reproduction of some target system by means of

a detailed and executable model. That is to say, we use the

term somewhat informally here. To avoid confusion, we do

not refer to other meanings of the term in the text.

Nevertheless, readers with a more formally inclined mind

may recognize similarities between some of our formal def-

initions and formal simulation relations (e.g. that of

Milner1). In particular, we define a number of satisfiability

relations that depend on one transition system ‘‘mimick-

ing’’ parts of another transition system: a clear reminder of

formal simulation relations.

ii Current examples of such networks include popular web-

sites such as www.facebook.com, www.twitter.com and

plus.google.com.

iii Our definition of ATS is very similar to what is merely

called a transition system by Baier and Katoen.7 We think,

however, that it is worth emphasizing that it is a special kind

of transition system, in order to avoid confusion. In particu-

lar, an ATS is not what is usually called a labeled transition

system (LTS),1 in which only transitions are labeled. We

also impose certain criteria of finiteness.

iv By P P∪:Pð Þ we mean the power set of P∪:Pð Þ, i.e. the
set of all subsets of P∪:Pð Þ, and by :P we mean the set

:pjp∈Pf g.
v Concerning the name of the structure, we chose to employ

the term ‘‘simulation purpose’’ instead of some
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modification of the more classic term ‘‘automaton’’ because

our main direct inspiration comes from TGV.12 As men-

tioned in Section 2, that is an approach to model-based test-

ing which employs a similar structure named ‘‘test

purpose’’. The name adopted reflects this connection and,

of course, emphasizes what the structure is supposed to be

used for.

vi To see this more clearly, consider that the purpose of τ is to

allow the specifier to hide events (i.e. internal events) that

he or she does not wish the SP to directly guide (e.g. setup

the simulation model in some arbitrary initial configura-

tion). One benefit of doing this is that many events that are

irrelevant in some situation can simply be seen as τ. In this

manner, the specification of SP becomes simpler: instead

of defining what may happen to each such event, it suffices

to just add one τ transition that captures what should happen

to all of them. Thus, M should be able to produce τ and

SP should be able to demand it, which implies synchroni-

zation on τ. Furthermore, although τ models ‘‘hidden’’

events, the synchronization is defined so that at least the

amount of such events may be revealed: a τ in SP must be

matched by exactly one τ inM. To specify an unbounded

sequence of τ in SP, it suffices to specify a loop from a

state to itself, with the transition labeled by τ. Finally, note

also that what should and should not be seen as an internal

event depends on the particular application and is up to the

implementer.

vii As seen in Definitions 7 and 8, a ./ b means that a and b

synchronize.

viii Note that this notion of satisfiability is similar in its intent

to what is found in model checking, since in both cases it

indicates that some property (SP in our case) holds with

respect to some system (M in our case). The difference

here is that: (i) our simulation purposes are transition sys-

tems, not logical formulas; and (ii) there is more than one

way in which we can say that an ATS satisfies a simulation

purposes.

ix In contrast, as remarked earlier, a contradiction would fol-

low if the same experiment was to lead to different verdicts.

But owing to the definition of simulation purposes, this can

never happen, as we show in Proposition 1.

x The division of correctness in soundness and completeness

only makes sense if there is something external to the algo-

rithms to used as a standard. The auxiliary procedures

require no such standard, and therefore we refer to the fact

that they work as specified merely as correctness.
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Appendix A: Analysis of the algorithms

Let us now provide a more rigorous account of whether

the algorithms are correct, and of how much resources they

employ. To this end, we investigate their soundness, com-

pleteness (notions which must be defined) and worst-case

complexities.

As noted previously, the presented algorithms are very

similar to each other. Owing to this, here we provide a

detailed analysis only of Algorithm 1, and then we explain

how Algorithm 2 differs.

To reason about soundness and completeness, it is first

necessary to establish two things: what entities are to be

evaluated; and what is the standard against which this eva-

luation is to be made? In this work, the entities to be eval-

uated are Algorithms 1 and 2, and ideally the standard to

be used would be the synchronous product SP⊗M that

arises from a simulation purpose SP and an ATSM. That

is to say, an algorithm would be considered: sound if

whenever it issues a SUCCESS or FAILURE verdict, the

desired satisfiability relation holds or does not hold,

respectively, in relation to SP⊗M; and complete if

whenever the desired satisfiability relation holds or does

not hold with respect to SP⊗M, it issues a SUCCESS or

FAILURE verdict.

However, this ideal standard is too strong for the prob-

lems considered in this article, which are based on finite

simulations on the presence of evolving and autonomous

agent behavior. Thus, this ideal notion of completeness is

out of the scope of the technique considered here. The

same is true for soundness, for the fact that certain out-

comes cannot be observed influences the evaluation of

satisfiability relations of interest. These issues are inherent

to the verification of the satisfiability relations with respect

to autonomous systems (i.e. whose behavior cannot be

fully predicted) by means of simulations, and not particu-

lar to the algorithmic solutions given in the present article.

This difficulty can be addressed in three ways: (i) by

removing the autonomy of the systems being investigated;

(ii) by making the properties to be verified independent of

the autonomous parts of the system; or (iii) by using a

weaker standard for soundness and completeness. Options

(i) and (ii) are discarded, because autonomy and adaptation,

even though they bring a number of problems, are funda-

mental characteristics of many of the systems we are con-

cerned with (e.g. MASs). Thus, we are left with option (iii).
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Let us then introduce the notions of observational

soundness and observational completeness. To do so, it is

first necessary to define the notion of observed runs.

Definition 16 (runsAobs() function). Let T S be an ATS, and

A an algorithm. Then the set of observed runs of A is

denoted by runsAobs(T S) and such that:

runsAobs(T S)⊆ runs(T S)

This denotes the set of the actually encountered runs,

among all possible runs.

Definition 17 (Observational soundness). Let SP be a

simulation purpose and M be a concrete environment

ATS. Then an algorithm is observationally sound if when-

ever it issues:

• a SUCCESS verdict, the desired satisfiability rela-

tion holds in relation to runsAobs(SP⊗M);
• a FAILURE verdict, the desired satisfiability rela-

tion does not hold in relation to runsAobs(SP⊗M),

even if the observed runs could be made longer;
• an INCONCLUSIVE verdict, the desired satisfia-

bility relation does not hold in relation to

runsAobs(SP⊗M), but it could perhaps hold if the

observed runs could be made longer.

Definition 18 (Observational completeness). Let SP be a

simulation purpose, M be an ATS and l the maximum

length of runs in runsAobs(SP⊗M). Then an algorithm is

observationally complete up to l if whenever the desired

satisfiability relation holds or does not hold with respect

to runsAobs(SP⊗M), it issues a SUCCESS, FAILURE or

INCONCLUSIVE verdict.

Each particular simulation execution provides a certain

number of observations concerning the actions of the

agents. Since one cannot know what all of the possible

observations are, the next best thing is to be sound and

complete with respect to the observations made. The

INCONCLUSIVE verdict is added to account for the case

in which a mere extension of the observations could have

sufficed to find a run of interest.

Algorithms 1 and 2 are designed with this goal in mind.

They systematically investigate all of the possible runs that

arise from the observations made in the course of explor-

ing the concrete environment ATS up to a certain length.

In fact, both Algorithms 1 and 2 are observationally sound,

are observationally complete, and terminate. It turns out,

moreover, that when Algorithm 1 outputs a SUCCESS ver-

dict, this verdict is also sound in the ideal sense, not only

the observational one. The same is true with respect to the

FAILURE verdict for Algorithm 2.

These results are shown to be true in Appendix A.1

(completeness), Appendix A.2 (soundness) and Appendix

A.3 (termination). In Appendix A.4 these several analyses

are grouped in order to establish the correctness of the

algorithms. The worst-case complexities, in turn, are pro-

vided in Appendix A.5. In all of the analyses below, defi-

nitions, lemmas and propositions are given in the order

that they are needed (i.e. bottom-up).

A.1. Justification of completeness

There are two problems that hinder the completeness of

the algorithms. The first is that the search tree may have

branches of infinite length, which forces the imposition of

a maximum depth to guarantee termination, and that is

why the INCONCLUSIVE verdict exists. The second is

that the search can only be made with respect to observed

synchronous runs, which may not contain all of the rele-

vant synchronous runs. Nevertheless, both algorithms are

still observationally complete up to depthmax þ 1. This is

carefully stated and proved below.

A.1.1. Justification of completeness of Algorithm 1

Proposition 2 (Observational completeness of Algorithm

1 up to depthmax þ 1Þ. If there are feasible runs of length

less than or equal to depthmax þ 1 in runs1obs(SP⊗M)

(i.e. feasibility holds with respect to the observed runs),

Algorithm 1 will find a minimal length one among them

and return the verdict SUCCESS.

Proof. Let n be the length of an arbitrary minimal length

feasible run such that n≤ depthmax þ 1. We prove by

induction on n that the algorithm will find some feasible

run t such that jtj= n.

Base (n= 2). Since the initialization phase of the algo-

rithm pushes one tuple on SynchStack, and

qo ˆ
f

success∈Successer(SP, q0) for some event f

(because, by hypothesis, t is feasible), it follows that line

12 is reached. By the construction of RemoveBest, it
always removes the transition which composes the shortest

path to Success, or a transition that leads to Failure (in the

case of strong feasibility). But in this case we are assum-

ing that the feasible run exists, so the transition chosen is

qo ˆ
f

Success. Finally, since by Definition 8 Success syn-

chronizes with any s0, it follows that the if block of line 31

is reached. Therefore, the run t = ((q0, s0), f , (Success, s0))
is found and returned together with the SUCCESS verdict

in line 32. And t is minimal because there is no feasible

run of shorter length, as any run must contain at least q0
and Success.

Induction hypothesis. Let σ be a subrun. If

t = σ:(p, s):e:(q, s0):f :(Success, s00) is a feasible run of min-

imal length, then r = σ:(p, s):e:(Success, s0) would have

been a minimal length feasible run if the transition p ˆ
eC

Success was added to SP.
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Inductive step (n> 2). By the inductive hypothesis, there

could be a minimal length feasible run

r = σ:(p, s):e:(Success, s0) such that t = σ:(p, s):e:(q, s0):f :
(Success, s00) for events e and f , and states (p, s) and

(q, s0), if SP was properly modified. This r could be

obtained when the if block of line 31 was reached. In the

present case, however, q0 6¼ Success, and as a consequence

the algorithm continues running from that point on. Since

progress= true, the while loop (lines 11–32) will not iter-

ate again, and execution continues from line 8. The algo-

rithm has just pushed a tuple on SynchStack, so it is not

empty. Indeed, because of line 9, this tuple will be imme-

diately analyzed by the while loop (lines 11–32). As in the

induction basis, since RemoveBest picks the transition

that leads to the shortest path to Success, it follows that

there is an event f such that qˆ
f

Success will be chosen,

and therefore the if block of line 31 will execute and

return a feasible run together with the SUCCESS verdict.

Moreover, since tj j= rj j+ 1 and by hypothesis r was of

minimal length, it follows that t is of minimal length.

A.1.2. Justification of completeness of Algorithm 2

Proposition 3 (Observational completeness of Algorithm

2 up to depthmax + 1). If there are synchronous runs of

maximal length less than or equal to depthmax + 1 in

runs1obs(SP⊗M) such that in their last state (q, s),

q 6¼ Success (i.e. certainty does not hold with respect to

the observed runs), then Algorithm 2 will find the shortest

among them and return the verdict FAILURE.

Proof. Follows by a proof similar to that of Proposition 2.

There are two differences: (i) Algorithm 2 is searching for

the Failure verdict, and not Success; (ii) if no further

synchronization is possible at some point, this suffices to

provide a run whose last state (q, s) is such that

q 6¼ Success. h

A.2. Justification of soundness

In what follows we investigate the soundness properties of

Algorithms 1 and 2. This requires first the consideration of

the auxiliary procedures that they employ.

A.2.1. Justification of correctness of auxiliary
procedures

The verification algorithms depend on an important auxili-

ary procedure for their initialization, Preprocess, and
therefore we investigate its correctness first.x

To begin, some auxiliary lemmas are required.

Lemma 1 (Correctness of PreprocessAux() for acyc-

lic paths). Let SP= hQ,E,P, ˆ , L, q0i be a simulation

purpose, source∈Q, and � a verdict state. Moreover, for

every q∈Q, let the following initial conditions hold:

dist½q�= nil and visited½q�= false. Then, after the execution

of PreprocessAux (SP, source, �, dist½ �, visited½ �)we

have that for every p∈Q that is part of an acyclic path of

SP, dist½p� will be the minimal distance between p and �.

Proof. The proof is by induction on the possible distances

towards �, denoted by n.

Base (n= 0). This can only be the case if source= �,
which is a (trivial) acyclic path, and in which case the

algorithm will correctly attribute 0 to dist½source� in line 3.

Induction hypothesis. Let n be the minimal distance from

source to �. Then, if source is in an acyclic path, there

exists a successor q0 such that n> dist½q0�∈N after execut-

ing PreprocessAux(SP, q0, v, dist½ �, visited½ �).

Inductive step (n> 0). If source has no successors, it can-

not possibly reach �. Hence, dist½source� is made infinite

in lines 7 and 19. On the other hand, if there are succes-

sors, then each such successor q0 that has not yet been vis-

ited will be recursively subject to in PreprocessAux()
line 11. By the induction hypothesis, this implies that if

dist½q0�∈N, then dist½q0� is the minimal distance from q0 to
�. Lines 12–16, in turn, select the minimal distance among

all such successors and store it in min. Since the distance

from source to any of its successors q0 is 1, dist½source�
clearly must be min+ 1, provided that min could be calcu-

lated at all (i.e. min 6¼ nil). Thus, line 19 correctly attri-

butes the minimal distance to dist½source�, if it can be

calculated. If, however, min ¼ nil, it means, again by the

induction hypothesis, that no successor of source is in an

acyclic path, and therefore neither is source. So there is no

need to attribute a number to dist½source�. h

Lemma 2 (Correctness of PreprocessAux() for cyclic
paths). Let SP= hQ,E,P, ˆ , L, q0i be a simulation pur-

pose, source∈Q, and � a verdict state. Moreover, for

every p∈Q such that p is in an acyclic path of SP, let the

following initial conditions hold: dist½p� 6¼ nil and

visited½p�= false. Then, after the execution of

PreprocessAux(SP, source, �, dist½ �, visited½ �), we

have that for every q∈Q, dist½q� will be the minimal dis-

tance between q and �.

Proof. The proof is similar to that of Lemma 1. The only

difference is that, in the inductive step, we know by

hypothesis that for all q∈Q in acyclic paths, dist½q�∈Z.

Thus, the only states that remain without an assigned dis-

tance are in a cycle. But every cycle eventually reaches a

state q0 of an acyclic path, so that now there is always a

successor q0 to source such that dist½q0� 6¼ nil in line 12.

Thus, even in the cyclic case, a distance is now assigned

to source. h

We thus have the following proposition.
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Proposition 4 (Correctness of Preprocess()). Let

SP= hQ,E,P, ˆ , L, q0i be a simulation purpose and � a

verdict state. Then Preprocess ðSP, �Þ returns a function

dist : Q! Z

such that, for every q∈Q, dist½q� is the minimal distance

between q and �.

Proof. Preprocess() calls PreprocessAux() twice.

In the first time, by Lemma 1, dist½q� is correctly defined to

all q∈Q that belong to an acyclic path of SP. In the second
time, by Lemma 2, dist½p� is correctly defined for the

remaining p∈Q that belong to cyclic paths of SP.
The correctness of the BuildRun() auxiliary proce-

dure will be assessed later, when it becomes necessary.

Finally, we note that there is nothing to prove with respect

to the RemoveBest() auxiliary procedure, since its very

definition has the property that is used in later proofs (i.e.

the capability of selecting the successor marked with a

minimal distance).

A.2.2. Justification of soundness of Algorithm 1
Observational soundness of Algorithm 1 (for weak fea-

sibility) The contents of the SynchStack stack of the algo-

rithm is central to this analysis, so let us introduce a related

concept and invariant now.

Definition 19 (runmax). Let SynchStack be non-empty and

as built by Algorithm 1. Then, runmax(SynchStack) is a

non-empty synchronous run of maximal length stored in

SynchStack.

Definition 20 (Main invariant). If SynchStack is non-

empty, then a non-empty synchronous run runmax(SynchStack)

can always be extracted from it.

To show the observational soundness of Algorithm 1

for weak feasibility, a number of auxiliary lemmas must

be given first. Let us begin by those concerning the invar-

iants of the algorithm.

Lemma 3 (Inner while loop invariant maintenance). Let

t = runmax(SynchStack) immediately before the inner while

loop of lines 15–32, q, sð Þ its last element, q ˆ
f

q0 a tran-

sition in SP and t0= runmax(SynchStack) during the loop.

Then this loops maintains the following invariant: t0 exists

and either t0j j= tj j or t0j j= tj j+ 1.

Proof. The only place within the inner while loop in which

runmax(SynchStack) is modified is in the if block of lines

21–32. This block is only executed if q ˆ
f

q0 synchronize
s !g s0. By hypothesis, q, sð Þ is the last element of t.

Therefore, the synchronization of these transitions imply

that t0= t:f :(q0, s0), which clearly is a synchronous run.

Since the pushing of this synchronization is the only modi-

fication performed to SynchStack, it follows indeed that

t0= runmax(SynchStack) exists and that t0j j= tj j (when the

if block is not executed) or t0j j= tj j+ 1 (when the if block

is executed). h

Lemma 4 (Middle while loop invariant maintenance).

Let t = runmax(SynchStack) immediately before the while

loop of lines 11–32, q, sð Þ its last state, and

t0= runmax(SynchStack) during the loop. Then this loop

makes one of the following statements true:

• t0j j= tj j+ 1 and progress= true;
• t0j j= tj j, progress= false and SynchStack is not

modified.

Proof. SynchStack is only modified in the inner while loop

of lines 15–32, and therefore by Lemma 3 we immediately

have the desired result. h

Lemma 5 (Main invariant maintenance). The outer-most

while loop of lines 8–34 maintain the main invariant.

Proof. By hypothesis, the main invariant holds in the

beginning of the loop. SynchStack is not changed (only

examined) until the while loop of lines 11–32. By Lemma

4, this loop guarantees that after its execution

t = runmax(SynchStack) will either have its length increased

by one or remain the same. In the first case, SynchStack is

not changed further after this loop, since Lemma 4 guaran-

tees that progress= true. Therefore, runmax(SynchStack) is

the same as before. In the latter case, though, the same

Lemma guarantees that progress= false and thus

SynchStack has its top-most element popped in line 34.

This implies that runmax(SynchStack) is in a different run,

t0, such that t0j j= tj j or t0j j= tj j+ 1. But in both cases it

exists, and therefore the main invariant is maintained. h

It is also necessary to show that the algorithm not only

maintains the Main Invariant, but also establishes it in its

initialization.

Lemma 6 (Initialization). The algorithm initialization

(lines 1 – 7) establishes Main Invariant.

Proof. SynchStack begins as an empty stack. Since q0, by

Definition 6, is not labelled, it follows by Definition 8 that

it synchronizes with s0. Indeed, q0 and s0 are synchronized

and pushed on the previously empty SynchStack. Hence,

after the initialization we have that runmax(SynchStack)=
((q0, s0)). h

The last two lemmas guarantee correct results, provided

that the algorithm terminates.

Lemma 7 (Construction of runmax by BuildRun())
Let SynchStack be non-empty and as built by Algorithms 1

or 2. Then procedure BuildRun() can build runmax

(SynchStack).
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Proof. BuildRun() merely starts at the top of

SynchStack and proceeds downwards in such a way that at

every iteration a new element is added to the beginning of

the run. This new element is chosen to be one whose depth

is exactly one less than the previously examined element,

and which is, by construction of SynchStack (line 29 of

Algorithm 1, line 23 of Algorithm 2), an antecedent of this

previously examined element. Therefore when the stack

becomes empty, the procedure returns a synchronous run.h

Lemma 8 (Correct result upon termination). Whenever the

algorithm terminates, it returns the correct result.

Proof. There are only two lines in which the algorithm

returns, namely, lines 32 and 35.

When line 32 is executed, by Lemma 3 we have that the

last element of runmax(SynchStack) is q0, which by line 31

must be SUCCESS. Therefore, runmax(SynchStack) is actually

a feasible run and by Lemma 7 it will be correctly built by

BuildRun(). Hence, the returned values are correct.
Concerning line 35, clearly it can only be reached if no

feasible run of length less than or equal to depthmax + 1

was found. Owing to Proposition 2, this means that there

is no such run, and therefore the result must be either

INCONCLUSIVE or FAILURE.
If at some point it was not possible to synchronize

t = runmax(SynchStack) because tj j= depthmax + 1, then

clearly there could be some run of length greater than

depthmax + 1 that was not examined, and therefore the result

in this case must be INCONCLUSIVE. Indeed, in such a

case, line 33 would have set verdic ¼ INCONCLUSIVE
permanently, and therefore the returned result would be cor-

rect. On the other hand, if this situation did not arise, then it

is plain that there is no possibility of finding a feasible run

of any length, and therefore the default setting verdict ¼
FAILURE is correct. h

Finally, we provide the proposition that guarantees

the observational soundness Algorithm 1 for weak

feasibility.

Proposition 5 (Observational soundness of Algorithm 1 for

weak feasibility). If Algorithm 1 terminates when checking

weak feasibility, then one of the following cases is true.

• It returns both SUCCESS and a weak feasible run

t ∈ runs1obs(SP⊗M) such that tj j≤ depthmax + 1.

Weak feasibility holds with respect to

runs1obs(SP⊗M).
• It returns FAILURE and there is no weak feasible

run in runs1obs(SP⊗M). Weak feasibility does not

hold with respect to runs1obs(SP⊗M), and no

extension of the runs therein would change this.
• It returns INCONCLUSIVE and there is no weak

feasible run in runs1obs(SP⊗M). Weak feasibility

does not hold with respect to runs1obs(SP⊗M), but

an extension of the runs therein could change this.

Proof. The algorithm is divided in an initialization part

(lines 1–7), an outer-most loop (lines 8–34) and a last

return statement (line 35). It suffices then to prove: (i) that

the main invariant holds during the entire execution of the

algorithm, and in particular during the outer-most loop;

(ii) that this invariant is established in the initialization

part, before the outer-most loop; and (iii) that if the algo-

rithms terminates, its output complies with what is

required by the proposition. Let us begin with (i) and (ii).

Initialization. By Lemma, 6, the initialization part

establishes the main invariant.

Invariant maintenance. By Lemma 5, the outer-most

loop maintains main invariant. Moreover, the last

return statement (line 35) clearly does not violate it.

Finally, by Lemma 8 we have that upon termination it

returns the correct result. This establishes (iii). h

Observational soundness of Algorithm 1 (for strong

feasibility) The observational soundness with respect to

strong feasibility follows from the fact that it suffices to

eliminate elements that have transitions that lead to

Failure from the search stack in order to verify this stron-

ger variant. This merely strengthens the main invariant

used to prove Proposition 5, by ensuring that the synchro-

nous runs in the search stack are all strong feasible runs,

and thus a similar result holds.

Proposition 6 (Observational soundness of Algorithm 1

for strong feasibility). If Algorithm 1 terminates when

checking strong feasibility, then one of the following cases

is true.

• It returns both SUCCESS and a strong feasible run

t ∈ runs1obs(SP⊗M) such that tj j≤ depthmax + 1.

Strong feasibility holds with respect to

runs1obs(SP⊗M).
• It returns FAILURE and there is no strong feasible

run in runs1obs(SP⊗M). Strong feasibility does

not hold with respect to runs1obs(SP⊗M), and no

extension of the runs therein would change this.
• It returns INCONCLUSIVE and there is no strong

feasible run in runs1obs(SP⊗M). Strong feasibility

does not hold with respect to runs1obs(SP⊗M), but

an extension of the runs therein could change this.

Proof. It suffices to show in what way the algorithm

changes when checking strong feasibility, and how these

changes affect the proof of Proposition 5. When checking

strong feasibility, the only difference with respect to weak

feasibility is that Algorithm 1 will set dist½Failure�= � 1

(line 2) and, potentially, execute lines 22–25.

The only effect of setting dist½Failure�= � 1 is that

RemoveBest()will always return first a q ˆ
f

Failure if

one exists, since by construction no other q0 can be such
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that dist½q0�≤ dist½Failure�. This implies that if during an

iteration of the while loop of line 11 there exists a

q ˆ
f

Failure and a s !g s0 that synchronize, the first call

to canSynch will return true and lines 22–25 will be

executed.

This execution will: pop SynchStack, thus eliminating

q, sð Þ from the synchronous run; and set progress and Succ

in such a way that the algorithm will proceed to the begin-

ning of the outer while in line 8, without performing any

further iteration of the other inner while loops, thus effec-

tively ignoring q, sð Þ and its successors. So whatever syn-

chronous run is stored in SynchStack, none of its elements

can contain a transition to some Failure, s0ð Þ state. This
implies that if the algorithm finds a weakly feasible run, it

will actually be a strong feasible run.

Finally, since the modifications induced by strong feasibil-

ity are very limited and do not compromise the proof of

Proposition 5, it follows that similar guarantees hold for strong

feasibility verification, but with the difference that they con-

cern strong feasible runs instead of weak feasible runs. h

Special case of the SUCCESS verdict in
Algorithm 1. As remarked before, the soundness analy-

sis of Algorithm 1 can be strengthened with respect to the

SUCCESS verdict.

Proposition 7 (Soundness of Algorithm 1 with respect to

SUCCESS). If Algorithm 1 ever outputs a SUCCESS ver-

dict, SP is feasible with respect to M and

runs SP⊗Mð Þ.

Proof. Algorithm 1 outputs a SUCCESS if, and only if, it

finds a feasible run r. Since no further observations can

change the fact that r exists in runs SP⊗Mð Þ, it follows
that SP is indeed feasible with respect toM, since other-

wise Definition 11 would be violated. h

A.2.3. Justification of soundness of Algorithm 2

Observational soundness of Algorithm 2 Algorithm 2 is

merely a slightly modified version of Algorithm 1, which,

instead of searching for a feasible run, searches for a run

which is not feasible. Hence, the properties and proofs

concerning both algorithms are very similar. Below we

analyze Algorithm 2 in light of the proofs already given to

Algorithm 1. In this way we avoid repeating most of what

has already been said, and instead focus on the important

differences that must be stressed.

Proposition 8 (Observational soundness of Algorithm 2).

Algorithm 2 terminates and one of the following cases is

true.

• It returns SUCCESS, and all runs of maximal

length in runs2obs SP⊗Mð Þ terminate in some state

(success, s). Certainty holds with respect to

runs2obs SP⊗Mð Þ, and no extension of the

observed runs therein would change this.
• It returns both FAILURE and a run of maximal

length in runs2obs SP⊗Mð Þ such that it terminates

either in a state without a verdict or in some state

failure, sð Þ. Certainty does not hold with respect to

runs2obs SP⊗Mð Þ.
• It returns INCONCLUSIVE. Certainty does not

hold with respect to runs2obs SP⊗Mð Þ, but an

extension of the observed runs therein could change

this.

Proof. Both Algorithms 2 and 1 are searching for a kind

of run. The proof follows by observing the few points in

which they differ, from which we can put the former in

terms of the latter and then use Proposition 5 to show that

the former is sound as well.

By construction, the differences are as follows.

• In line 26, Algorithm 2 finds a run that terminates in

some state Failure, sð Þ, whereas in the equivalent

place of Algorithm 1 a state Success, sð Þ is found.

Since Algorithm 1 indeed finds such a state if it exists,

if follows that Algorithm 2 will also find the state it is

searching for if it exists. This establishes that it cor-

rectly returns FAILURE and an associated run.
• In line 28, Algorithm 2 reaches some state q, sð Þ

such that q 6¼ Success and q 6¼ Failure, which is

indicated by progress= false. In Algorithm 1, such

a state merely indicates that it is time to try another

path in the synchronous product, and thus a check

for it is located in line 11. However, in Algorithm 2

this state does indicate a result, that is to say, the

fact that there is a run which terminates in a state

that has no verdict, an undesirable condition. Like

in the point above, then, in this case the algorithm

also correctly returns FAILURE and a related run.
• In lines 30–31, Algorithm 2 pops from SynchStack

only after examining all of the contents of the topmost

Unexplored set. This is similar to what Algorithm 2

does, which pops only if progress= false after trying

all elements in Unexplored. The difference is that in

Algorithm 2 all elements of Unexplored are expected

to synchronize, and thus it suffices to check whether

Unexplored is empty after the analysis to pop it,

whereas in Algorithm 1 it may be the case that

Unexplored is not empty and at the same time syn-

chronization is no longer possible.
• If the search does not go beyond the depth depthmax

and none of the other conditions for FAILURE are

met, it means that all runs of the synchronous product

terminate in some state Success, sð Þ. Algorithm 2 cor-

rectly reports this by setting verdict =SUCCESS in

line 6, which under these conditions remains unmodi-

fied until line 32, when it is returned. h
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Special case of FAILURE verdict in Algorithm 2. As

remarked before, the soundness analysis of Algorithm 2 can

be strengthened with respect to the FAILURE verdict.

Proposition 9 (Soundness of Algorithm 2 with respect to

FAILURE). If Algorithm 2 ever outputs a FAILURE ver-

dict, SP is not certain with respect to M and

runs SP⊗Mð Þ.

Proof. Algorithm 2 outputs a FAILURE if, and only if, it

finds an refutable run r before reaching the maximum

search depth. Since no further observations can change the

fact that r exists in runs SP⊗Mð Þ, it follows that SP
cannot be certain with respect to M, since otherwise

Definition 13 would be violated. h

A.3. Justification of termination

Both algorithms terminate, as the following results show.

A.3.1. Justification of termination of Algorithm 1

The following auxiliary lemma is necessary before showing

that the algorithm terminates. It argues that, by the construc-

tion of the algorithm, similar tuples used in the search can

only be pushed a finite amount of times on the search stack.

Lemma 9 (Finite consideration). Let q, s, e, p,ð
sim,Unexplored, depthÞ be an arbitrary tuple on

SynchStack of Algorithm 1 at an arbitrary point of its exe-

cution. Then, only a finite amount of tuples with the same

q, s, e, p, Unexplored and depth can be pushed on

SynchStack (let us call this the property of being finitely

considered).

Proof. By induction on depth.

Base (depth= 0). Because of line 13, depth0 is always

greater than zero in the outer-most while loop. Thus, the

only time in which such a tuple can be pushed is in line 6,

which is clearly executed only once, and therefore makes

it finitely considered.

Induction hypothesis. The tuples q, s, e, p, sim,ð
Unexplored, depth� 1Þ are finitely considered.

Inductive step (depth> 0). Take a tuple tup= q0, s0, f ,ð
q, sim0, unexplored0, depthÞ from SynchStack. It was either

pushed on SynchStack after examining some tuple (in line

29) or resulted from a removal of an element from the set

of unexplored transitions in a tuple already in SynchStack

(in line 12).

Suppose that tup was pushed on SynchStack. Then there

is a tuple tuppre of depth k = depth� 1 that was peeked to

generate tup. tuppre can only be peeked once in line 9,

because in line 12 one of its components is permanently

modified (i.e. a transition is removed from its set of unex-

plored transitions). So once tuppre is peeked, tup is

calculated and pushed on SynchStack once. Since by

hypothesis tuples marked with depth k = depth� 1 are

finitely considered, this can only be repeated a finite

amount of times. Moreover, by construction, if there are

other tup0pre 6¼ tuppre that can be used to generate tup, the

only difference in tup0pre with respect to tuppre has to be the

state s of M. But because of the finite branching of M,

there are only finitely many such states up to depth� 1, so

in all tup can only be pushed on SynchStack a finite amount

of times, and is therefore finitely considered.

Suppose, on the other hand, that tup was obtained by

reducing the set of unexplored transitions of another tuple

already on SynchStack. In this case, clearly unexplored0 6¼
Successors (SP, q0). But tuples of depth greater than

zero can be pushed only in line 29, in which, by construc-

tion, the equality unexplored0 6¼ Successors (SP, q0)
must hold. So tup has never been pushed on SynchStack,

and thus is finitely considered. h

The following proposition can now be proved.

Proposition 10 (Termination of Algorithm 1). Algorithm 1

terminates.

Proof. Termination follows from the fact that each state of

SP is examined only a finite amount of times, after which

either a feasible run is found and the algorithm terminates,

or synchronizations are no longer possible and thus

SynchStack becomes empty, thereby achieving termination

as well. The former case arises if indeed there are feasible

runs, because by Proposition 2 one of them will be found,

and since this implies the execution of the return statement

in line 32, the algorithm terminates. The latter case, how-

ever, require some more analysis.

Since the number of states in SP is finite, the possible

search depths are finite (for depthmax is finite), and the

amount of events are also finite, there are only finitely many

events g, sets of unexplored0 and natural numbers depth0 to
be considered in line 29. Furthermore, althoughM may have

an infinite number of states, for any finite depth there is a

corresponding finite amount of reachable states s0 (and, thus,
of simulation states sim0), owing to the property of finite

branching of ATSs. So there are only finitely many tuples to

be considered in line 29. Moreover, by Lemma 9 all pushed

tuples are finitely considered, which implies that each of

these finitely many tuples can be pushed on SynchStack at

most a finite amount of times. Hence, the size of SynchStack

is bounded by a finite quantity.

Every time a tuple q, s, e, p, sim,Unexplored, depthð Þ is
chosen in line 9, Unexplored can only decrease, since the

only statement that modifies it is the call to RemoveBest()
of line 12. So for any set Unexplored, it will decrease until it

reaches size zero and is popped. That this will indeed happen

follows from these cases for the guard in line 11.

• If Unexplored = †, we have that progress= false,

and in line 34 the tuple will be popped.
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• If Unexplored = †, but depth≥ depthmax, it will be

again the case that progress= false and in line 34

the tuple will be popped.
• Otherwise, the while loop begins and

RemoveBest() of line 12 is executed, thereby

reducing its size.

Now, since there can be only finitely many tuples on

SynchStack, and that each is guaranteed to be popped eventu-

ally, it follows that the outermost while loop eventually termi-

nates, thus establishing that the algorithm itself terminates. h

A.3.2. Justification of termination of Algorithm 2

A similar result holds for Algorithm 2.

Proposition 11 (Termination of Algorithm 2). Algorithm 2

terminates.

Proof. Similar to the proof of Proposition 10, but taking in

account the fact that Algorithm 2 is searching for a refuta-

ble run, and not a feasible run. h

A.4. Justification of correctness

Based on the results shown, we can now formalize their

correctness with the following propositions.

Proposition 12 (Correctness of Algorithm 1). Algorithm 1:

• is observationally sound for both weak and strong

feasibility;
• is observationally complete up to depthmax + 1 for

both weak and strong feasibility;
• gives a sound verdict in the classical sense (i.e. with

respect to runs(SP⊗M)) whenever it outputs the

SUCCESS verdict;
• terminates.

Proof. Follows directly from Propositions 5, 6, 7, 2 and

10.

Proposition 13 (Correctness of Algorithm 2). Algorithm 2:

• is observationally sound;
• is observationally complete up to depthmax + 1;
• gives a sound verdict in the classical sense (i.e. with

respect to runs(SP⊗M)) whenever it outputs the

FAILURE verdict;
• terminates.

Proof. Follows directly from Propositions 8, 9, 3

and 11. h

A.5. Justification of worst-case
complexities

Let us now provide the exact worst-case complexities of

the auxiliary procedures and of the verification algorithms

themselves. Owing to their similarity, Algorithms 1 and 2

actually have the same such complexities, and this follows

from the same proof.

A.5.1. Worst-case complexities of auxiliary
procedures

Lemma 10 (Worst-case time complexity of

Preprocess()). Let SP= hQ,E,P, ˆ , L, q0i be a

simulation purpose. Then Preprocess() runs in Oð Qj j2Þ
time.

Proof. In Preprocess() itself, it is clear that each state

in Q must be visited twice for initializations, and that the

rest of the running time is given by two invocations of the

PreprocessAux() subprocedure. Because to each such

state initialization a constant amount of operations is per-

formed, these initializations together take time propor-

tional to m0 = 2 · Qj j. PreprocessAux(), in turn, will

recursively visit each state in Q accessible from q0, which

in the worst case are all of the states of Q. In each such

visit, a state source is specified, all of its successors q0

may be examined in order to determine whether they have

or have not been visited yet, and a maximum constant

amount of other operations are performed, without taking

in account the recursive call. Since in the worst case there

may be Qj j successors, each such visit to a state takes time

proportional to m1= Qj j,
In considering the successors q0, two cases may arise. If

q0 has already been visited, then visited½q0�= true (because

this is the first thing PreprocessAux() sets when visit-

ing a state), and no recursive call happens. On the other

hand, if q0 has not been visited, then visited½q0�= false and

a recursive call to PreprocessAux() takes place in line

11. Since in each visit the state is marked as visited, there

can be at most Qj j such recursive calls, hence at most

m2 = Qj j+ 1 visited states (counting the initial visit of q0).

Therefore, in all, Preprocess() has a time complexity

of O(m0+2m1 ·m2)=O(2 · Qj j+2 · Qj j · Qj j)=O( Qj j2). h

Lemma 11 (Worst-case space complexity of

Preprocess ()). Let SP= hQ,E,P, ˆ , L, q0i be a

simulation purpose. Then Preprocess() consumes

O( Qj j) memory.

Proof. This follows from two observations.

• The only data structures employed, dist½� and

visited½�, each consumes memory proportional to

Qj j by construction. This can be seen by noticing
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that in these data structures only elements of Q are

used as keys, and only numeric or Boolean ele-

ments are used as values.
• The recursive calls of line 11 of

PreprocessAux() cannot induce a call stack

larger than Qj j, since each state is visited at most

once.

Therefore, in all, O(2 · Qj j)=O( Qj j) space is used. h

A.5.2. Worst-case complexities of Algorithms 1 and 2

The complexities of Algorithms 1 and 2 must be given

considering the fact that they perform a depth-first search

on a transition system with possibly infinitely many states

that is built on-the-fly (i.e. SP⊗M), without keeping

track of the visited states, and only up to a maximum

depth (i.e. depthmax). This means that the complexities

must be given mainly in terms of depthmax and the maxi-

mum branching factor (i.e. the maximum number of possi-

ble successors of any state).

The maximum branching factor of SP⊗M is calcu-

lated as follows.

Proposition 14 (Branching factor). Let SP= hQ,Esp,

Psp, ˆ , Lsp, q0i be a simulation purpose, and M an ATS

in which any state has at most m successors. Then the

branching factor (i.e. the maximum number of possible

successors of any state) of SP⊗M is O( Qj j · Esp

�� �� ·m).

Proof. Take an arbitrary state (q, s) of SP⊗M. Let us

first consider the number of possible transitions q ˆ
f

q0 in
SP. Certainly this number is less than or equal to

Qj j · Esp

�� ��, which corresponds to all possible such transi-

tions from q. In the worst case, each of these transitions

could synchronize with the m transitions from the states of

M, thereby generating a branch factor of Qj j · Esp

�� �� ·m.

Thus, the actual branching factor must be

O( Qj j · Esp

�� �� ·m). h

It is now possible to give the complexities in space and

time.

Proposition 15 (Worst-case space complexity of

Algorithms 1 and 2). LetM be the an ATS in which each

state has a size less than or equal to k. Then, in the worst

case, Algorithms 1 and 2 consume O( Qj j · Esp

�� �� ·m ·
k · depthmax) space.

Proof. Since the algorithm performs a depth-first search in

a graph that is built on-the-fly and only up to a maximum

depth (i.e. depthmax), it follows that the space complexity

is given by the maximum size that the search stack may

attain. This size, in turn, is given by the amount and size

of elements that are put on the stack at each depth. The

amount of these elements is no more than the maximum

branching factor b, since it is a depth-first search. And the

size of each element is proportional to k, since all that

these elements contain is proportional to the current state

of M. Hence, the size of the search stack is less than or

equal to c1 · b · k · depthmax, for some constant c1.

By Proposition 14, b≤ c2 · Qj j · Esp

�� �� ·m, for some con-

stant c2. Therefore, the size of the search stack is bounded

by c1 · c2 · Qj j · Esp

�� �� ·m · depthmax, hence O( Qj j · Esp

�� ��
·m · depthmax). h

Proposition 16 (Worst-Case Time Complexity of

Algorithm 1). Let SP= hQ,Esp,Psp, ˆ , Lsp, q0i be a

simulation purpose, M= hS,E,P, ! , L, s0i an ATS,

and b= Qj j · Esp

�� �� ·m. Then, in the worst case, Algorithms

1 and 2 have O(bdepthmax) running time.

Proof. At each new depth reached by the search, no more

than b elements are put on the search stack, where b is the

maximum branching factor. Since in the worst case all ele-

ments reached up to a maximum depth (i.e. depthmax) will

be examined, it follows that the total quantity of examined

elements is bounded by c · bdepthmax , for some constant c.

This results in O(bdepthmax) running time. h

These analyses concern only the verification procedure,

and ignore the internal structure of the states in M. In

actual applications, this may be significant. In the case of

the MASs we studied in da Silva,11 for example, the maxi-

mum number m of successors of states in M is O(n2),

where n is the size of the MAS environment under consid-

eration. As in this case, other applications must refine the

analysis of complexities to account for the inner working

of the simulation model.
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