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ABSTRACT
Simulation models are abstract representations of systems
one wants to study through computer simulation. In multi-
agent based simulation, such models usually represent agents
and their relations. An important issue concerning these
models is how they can be effectively reused across different
simulations. But while much attention has been given to
other engineering issues, model reuse has remained mostly
untreated. To help address this issue, in this paper we
present both a method and a software architecture for multi-
agent simulation designed with reuse in mind. We employ
software components as fundamental reusable model assets
and show how their composition can also be reused. Our
technique depends on some domain specific assumptions,
such as the fact that agents must be related by social net-
works, and we argue that these are actually helpful in the
context of software components. A case study is also given
in order to illustrate clearly how the same component can
be reused in two distinct simulation problems using our ap-
proach.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence – multiagent systems; I.6.5 [Simulation and Mod-
eling]: Model Development; D.2.13 [Software Engineer-
ing]: Reusable Software; D.2.11 [Software Engineering]:
Software Architectures – domain-specific architectures

General Terms
Experimentation, Design, Human Factors

Keywords
multi-agent simulation, social simulation, software compo-
nents, social networks

1. INTRODUCTION
A simulation model is an abstract representation of some

system, which one wants to analyze through computer sim-
ulation. In multi-agent based simulation, these models usu-
ally capture the behavior of individual agents, as well as

their relationships. Recently, several simulation frameworks
have been built in order to foster and aid multi-agent sim-
ulation [3]. Their purpose is to provide common simulation
facilities, allowing designers to focus on the models to be
simulated and not on the simulator’s infrastructure.

The development of good models demands time and very
specific skills. Hence, their reuse becomes highly desirable.
Current tools, however, do not provide adequate support
to such a reuse, owing to both methodological and techni-
cal problems. Usually, models are created to address one
particular question, without considering the future reuse
of their parts in different circumstances. Accordingly, the
tools provide facilities suitable for monolithic model con-
struction, but few special facility for reuse of their parts.
Thus, most actual reuse relies on the abstractions present
in the programming language used to program the models
(e.g., classes, procedures). This is a very limited way of
reuse, since such languages are either not designed specifi-
cally for the concerns of simulation (e.g., Java [13]) or too
simple to provide useful reuse abstractions (e.g., special pur-
pose scripting languages). The few tools that do provide
some useful form of model reuse, in turn, have other limita-
tions that we review below.

To address these issues, this paper presents a new method
for multi-agent simulation and a software architecture that
gives support to it. Roughly speaking, we propose that sim-
ulation models should be assembled using reusable elements
pertinent to particular classes of problems. To achieve this,
such elements should be created as independent units in-
tended for third-party composition. That is, they should
be software components, as defined in [15]. The simulator,
in turn, should: (i) allow the creation of simulation models
using components; (ii) answer interesting questions about
such models, employing the semantics associated with the
components. This semantic is attained specially through
the following domain-specific assumptions: (i) agents are
arranged in social networks; and (ii) agents communicate
through a special data structure called stimulus.

Our components represent both agents and properties about
such agents. They are implemented as Java classes that fol-
low particular conventions. To employ these components in
concrete simulations, it is necessary to instantiate them and
compose such instances. This is achieved using scenario de-
scriptions, which are also reusable assets. The simulation
execution is captured in separate experiment descriptions.
And while to code a component it is necessary to be a Java
programmer, both scenario and experiment descriptions are
designed to be easy to use by non-programmers. Hence, our
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method defines two kinds of users, namely, those that build
components and those that in fact use them.

It is worth to emphasize that we have a working Java im-
plementation of the system described here. Notice, however,
that the focus of this paper is on simulation model reuse, not
on the whole simulation system. Therefore, other engineer-
ing concerns (e.g., simulation algorithms and timing issues)
shall not be considered, important as they may be. Our ma-
jor contributions, here, are the following: (i) a conceptual
account of component-based multi-agent simulators; (ii) the
technical mechanisms needed for it; and (iii) a case study
crafted to show the value of model reuse as we propose.

The paper provides a gradual explanation of our approach.
We begin by placing our work in context with a review of
other similar works and arguing that they are insufficient
for the kind of model reuse we aim (Section 2). We do
not expect the reader to be familiar with the concept of
software components. Therefore, we then explain what a
software component is and what a component-oriented ap-
proach must provide (Section 3). Next, we introduce our
component-based method for multi-agent simulation model
reuse (Section 4). There we present the assumptions, arti-
facts, user roles and process that constitute it. The method,
however, requires an actual implementation to be useful.
Thus, we present the main architectural elements of our
implementation and show how they explicitly support our
methodological concerns (Section 5). Then, we explore a
case study that demonstrates how the proposed approach
can, indeed, be useful (Section 6). Finally, we discuss our
achievements, reflect about the current problems and set
directions for further research (Section 7).

2. RELATED WORK
A good analysis of the current state of affairs in multi-

agent simulation can be found in [3]. Below, we shall exam-
ine the approaches we regard as closer to ours and point out
the problems that we address in this paper.

It is generally acknowledged that it is important to sep-
arate the simulator infrastructure from the models being
simulated. Swarm [7], MASON [5] and Repast [8], which
are popular multi-agent simulation platforms, try to achieve
this by providing both a framework to program models and a
simulation engine to run them. This helps reuse simulation
infrastructure, but does not simplify the reuse of parts of
simulation models in different simulations built by different
people.

A new version of Repast, called Repast S [9], is being de-
veloped in order, partly, to address this issue. This new
version is similar to our system in that external Java classes
can be arranged together declaratively (i.e., without Java
programming) to compose simulation models. However, we
differ from them in a number of ways. First, the simula-
tion models of Repast S are mostly restrictions on which
components are in the model, while our models carry infor-
mation regarding not only the components, but also their
actual instantiation (i.e., we represent a complete state of
affairs). Second, Repast S has a very inclusive definition
of component, so that any Java class can be a component,
while we enforce several requirements in order to attain more
semantics. Moreover, it seems to us that although a technol-
ogy of composition is available, the methodology associated
with Repast S does not foster the creation of reusable com-
ponent families, which is one of our core concerns. Third,

Repast S aims at being a general platform, while we prefer to
adopt a domain-specific approach, which we believe to lead
to more elegant and manageable simulation models, albeit
with more limited applications. Besides the points we shall
discuss later, we think that the simplicity thus achieved is
also important in order to make simulators more accessible
to non-programmers, which is one of our objectives.

The idea of a component-based agent simulation environ-
ment is also used in the Quicksilver project [2]. In that
work, any compiled Java class can be treated as a compo-
nent. Some predefined classes of agents are provided and
a special tool allows the user to instantiate classes, connect
instances and run the simulation thus assembled. In this
way, agents can be reused in several simulations. This ap-
proach, however, suffers from some problems. Like Repast
S, it relies on a very inclusive definition of component, which
implies that such components do not bring any advantage
over normal Java classes. The reuse technology is in the
composition tool that allows arbitrary instances to be easily
connected by the user, but this is not really specific to sim-
ulation, nor does it help in enforcing any special semantics
to the underlying classes. Hence, such a reuse mechanism is
mostly a general Java technology, which allows one to build
programs in a different manner. This contrasts with our ap-
proach, in which components are highly structured entities
designed for simulation: they must implement predefined
interfaces, be annotated in special ways and be deployed to
a special location. Furthermore, Quicksilver assumes that
the user has knowledge of Java programming. This makes it
inaccessible to non-programmers, whereas our approach has
the contrary goal of facilitating their access to simulation.

This goal is also shared by NetLogo [18], an environment
designed to simplify the creation of simulation models. To
this end, a graphical editor and a set of controls (e.g., but-
tons, sliders, plotters) are provided in order to build the
simulation front-end, while a special procedural scripting
language (assumed to be easier to learn than a general pur-
pose language such as Java) can be employed to specify the
actual simulation behavior. The system, however, does not
offer any reuse mechanism beyond copy-and-paste of scripts.

With similar purposes, but in a more sophisticated real-
ization, SeSAm [4] provides a rich application in which users
may create agents, setup simulations and run them. Agent
creation relies on a base library of agent properties, which
must be used in order to define new agents. Though simple
agents can be built easily with point-and-click interaction,
more advanced ones require the use of a custom scripting
language. The created agents are then instantiated in order
to build one or more simulation situations, all of which are
stored in a model file. SeSAm, however, does not provide
advanced facilities to reuse such agents across different sim-
ulation models. The only way to do so is through importing
a model into another, which amounts to a copy-and-paste
technique. On the other hand, programmers have the possi-
bility of extending SeSAm through plugins written in Java.
Such plugins allow the definition of new elements that the
final user may employ when building his agents (e.g., new
functions to be used when specifying the behavior of agents).
Therefore, SeSAm does provide an interesting reuse technol-
ogy, but whose purpose differs from ours, which aims at the
easy reuse of whole agents and other simulation elements.

Finally, in [10] we find the ELMS markup language, which
bears some similarities to our scenario language in that both
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describe features of the simulation environment. However,
the objective of ELMS is to restrict the kinds of entities
that exist, while ours is to explicitly define and compose in-
dividual entities. Moreover, ELMS is geared towards agent-
oriented programming, while our underlying programming
paradigm is the more common object-oriented one.

3. SOFTWARE COMPONENTS
Before proceeding to our particular application, let us first

examine what software components are in general. The fun-
damental ideas concerning them were given in [6], in which it
was envisioned that software should be built using reusable
parts, much like electronics are built using reusable inte-
grated circuits. To this end, the task of developing soft-
ware would have to be divided into two branches. One that
would take care of building components useful in many dif-
ferent situations, and another that would develop the final
software using these reusable components. This way, de-
velopers would save time by not having to rewrite software
parts.

These ideas have developed through the years, and to-
day we have a Component-Based Software Engineering field.
Following the contemporary treatment of the subject found
in [15], we characterize a software component as follows:

• It is an independent unit of deployment. That is, it can
be packaged and transmitted independently of any-
thing else;

• It is a unity of third-party composition. Components
are designed to be reused in unknown applications,
built by different people;

• It has no externally observable state. This is just a
technical detail to make sure that the same compo-
nents will always perform the same functions;

• It has contractually specified interfaces and explicit con-
text dependencies only. In other words, one can know
what the component requires from and provides to an
application;

• It targets a particular component platform. Compo-
nents frequently assume the existence of a platform
that provides useful services.

To be used, software components must provide compo-
nent instances (i.e., objects that do have an observable state
and are, thus, useful in particular applications) and such in-
stances must be composed.

Naturally, technology alone does not guarantee the cre-
ation of reusable components. One can easily use a component-
oriented technology in order to build software parts for a
specific application which are not reusable at all. Conse-
quently, truly component-oriented approaches require two
cares. First of all, there must be a method that defines
clearly what kind of entities the components must repre-
sent, how they are composed and how such compositions
are to be employed. Second, a technology that supports
such a method must also be provided, in order to enforce it
as much as possible.

4. METHOD
In this section we present our method for multi-agent sim-

ulation model reuse. It depends on some domain assump-
tions (Section 4.1), defines artifacts to be manipulated (Sec-
tion 4.2), roles for the involved people (Section 4.3) and a
process to be followed (Section 4.4). The technological de-
tails for each of these are omitted here and are given in
Section 5.

4.1 Domain Assumptions
Our method depends on assumptions concerning agent

interaction. Clearly, the manner through which agents in-
teract play a fundamental role in determining what kinds
of simulations can be created. More subtly, however, the
possible interaction mechanisms also determine the facilities
that a simulator can provide in order to help experimenters.
The more specific these mechanisms are, the more a simu-
lator can do automatically. In our case, we have adopted
two major domain restrictions. One concerning the agents’
environment and the other relating to their communication.

4.1.1 Social Network Environment
A social network is a graph where vertices represent agents

and edges account for relationships among those agents.
Agents can be individuals, organizations, machines or any-
thing else that can be part of a relation. Relationships,
in turn, can represent both physical and logical concepts.
For instance, a person may be physically related with its
work place (e.g., a “works at” relation), but logically related
to its colleagues (e.g., a “is friend of” relation). We have
chosen such networks owing to their social relevance (e.g.,
see [17]) and mathematical tractability (e.g., through Graph
Theory).

4.1.2 Stimuli Based Communication
Agents follow a behaviorist design. Each agent is seen as

a black box which receives stimuli and reacts accordingly.1

The main communication abstraction provided by the sim-
ulator, thus, is the stimulus. The purpose of this design is
to simplify the communication that can take place, which
allows the simulator to provide useful services (e.g., useful
kinds of experiments).

4.2 Artifacts
Reuse is achieved by defining three kinds of artifacts: (i)

the components themselves; (ii) the descriptions of how to
instantiate and arrange the components, which we call sce-
narios; and (iii) the descriptions of the simulations to per-
form using these scenarios, which we call experiments. Let
us analyze each one.

4.2.1 Software Components for Simulation Models
Our components represent very specific entities. We de-

fine two kinds of components, namely:

• Agent components, which account for the simulated
agents;

• Property components, which define what can be mea-
sured and calculated concerning the agents.

An agent component defines a particular kind of agent.
That is, it defines how such an agent behaves and what
1This design follows some of the key ideas found on [11].
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parameters it has. In a simulation, one must instantiate
agent components in order to have actual agents. All of the
instances of a particular component will behave similarly,
varying only according to the parameters specified during
instantiation. Property components are analogous.

To be useful, component instances from different compo-
nents must interact with each other. Hence, components
should not be developed in isolation. Rather, whole compo-
nent families for particular domains must be developed in
order to allow interesting problems in such domains to be
formulated.

4.2.2 Scenarios
In order to be used, components must be instantiated in

particular scenarios. Scenarios define which instances must
be created and how they are related. They are also reusable
assets, because they can be frequently used in distinct situ-
ations (e.g., different people might want to study a scenario
in different manners) and may not be cheap to produce (e.g.,
because the data needed to create them is hard to obtain).
Therefore, scenarios must be kept in separate files, allowing
their storage and sharing. Moreover, they should be easy to
be created, so that the reuse of components becomes easy
as well.

4.2.3 Experiments
It is not sufficient to have a description of an interesting

scenario. It is also necessary to be able to do something
useful with it. To this end, experiments provide standard
strategies to explore them. Owing to the domain-specific
assumptions associated with our components and scenarios,
such strategies can be quite informative, as we shall see in
Section 5. Typically, experiments should be performed in
order to answer, automatically, particular questions about
scenarios, instead of just “watching” the simulation unfolds.

The same scenario can be used to perform different ex-
periments. And the same experiment, or a slightly modified
version, can be performed in different scenarios. Thus, ex-
periment definitions should also be specified in separate files.
And much like scenarios, should be easy to create.

4.3 User Roles
We define two kinds of users, namely, component designers

and experimenters. The former are responsible for building
the components, while the latter are supposed to create sce-
narios and experiments using these components. The aim
of this separation of roles is to concentrate the harder im-
plementations efforts in the components’ construction and
make their actual use simple. We will see that the architec-
ture of the system enforces this: while to create a component
it is necessary to be a Java programmer, to build scenarios
and run experiments it is only necessary to learn a simple,
special purpose, markup language.

Naturally, the same person might be both a component
designer and an experimenter. Still, the idea of defining
roles is useful because it allows each user to reflect about
his abilities, and, based on this, adopt the roles that are
more suitable to him. Moreover, when acting in one of the
roles, the user has clear and distinct responsibilities. Design-
ers must develop reusable component families, while experi-
menters must use them to study problems in a cost-effective
manner.

4.4 Process

Figure 1: The dependencies between the several
methodological concerns (in ellipses) and the arti-
facts that address them (in rectangles). Each layer
has its particular worries and goals.

From the above discussion, the following process follows.
First, components for a particular domain (i.e., a component
family) must be created. Then, particular scenarios for this
domain can be formulated. Finally, experimentation and
analysis can be carried out using these scenarios. Hence,
from the users’ perspective, the method can be summarized
by a layered structure as shown in Figure 1.

5. IMPLEMENTATION ARCHITECTURE
To be effective, the method described in Section 4 de-

mands special facilities from a simulator. In this section we
describe the fundamental architectural elements of our sim-
ulator, which is designed to provide such facilities. As we
shall see, each of the elements described in the method have
explicit architectural support and the domain assumptions
made there are employed. Moreover, although the points
discussed are mostly conceptual and language-independent,
we shall refer to elements of our Java implementation when-
ever possible, for the sake of concreteness.

Components are loaded, managed and put to use by the
simulation container. Together, components and simulation
container form a complete simulation system. In order to
use such a simulation system, the user must:

1. Deploy the components to a special directory, called
components’ repository, where the container can find
them. This must be done only once for each new com-
ponent that is added to the system;

2. Specify a particular scenario file to be employed;

3. Specify a particular experiment file to be employed.

After the user proceeds this way, the system executes the
simulations specified in the experiment file. When it is fin-
ished, it prints the results to the user. The nature of such
results depends on the kind of experiment being performed,
as we will see below.

In what follows we explore our component conventions
(Section 5.1) and the definition of scenarios and experiments
(Section 5.2).

5.1 Components
Our components are Java classes which implement some

special interfaces, are annotated in a special manner and
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@AComponentInfo(
id = "com.example.DiffusionAgent",
version = 1,
name = "Diffusion Agent",
description = "A simple diffusion agent.",
type = AComponentInfo.ComponentType.AGENT

)
public class DiffusionAgent extends

StandardSocialNetworkAgent {

// Agent implementation would come here.

@AParameterInitializer(
name = "Transmission Rate",
description = "The probability that the agent will

transmit his resources to another."
)
public void setTransmissionRate(double tr) {

this.transmissionRate = tr;
}

}

Figure 2: An example of annotation that de-
fines the meta-information of an agent compo-
nent. First, a AComponentInfo defines the gen-
eral characteristics of the component. Then,
AParameterInitializer marks a method as a param-
eter initializer. Notice also that the agent is ex-
tending a StandardSocialNetworkAgent class, which
we provide as a convenience for component design-
ers.

are packaged in a JAR (Java ARchive) file [14]. To cre-
ate the several agents and properties specified in a scenario,
the container instantiates such classes, using the parameters
specified by the scenario.

The interfaces define standard ways in which the compo-
nents communicate with the container and with each other.
For example, every agent component must implement a pre-
defined interface called IAgent.

Components also have associated meta-information that
allow the container to know their names, versions and so on.
We employ Java’s annotations in order to attach such meta-
information. Annotations are also used to mark methods
that have special meaning to the simulator. For example,
agents may have methods that set their parameters and it
is important that such methods are known to the container.
See Figure 2 for an example of both uses (this example will
be further commented in Section 6).

There are two kinds of components, each defined by spe-
cific interfaces and annotations. Let us examine the general
characteristics of each one.

5.1.1 Agent Components
Agent components are responsible for specifying kinds of

agents that one wishes to simulate. In a simulation scenario,
one specifies several instances of the available agent compo-
nents. Each instance represents one particular agent with
particular parameters. Their existence and interaction are
supported by the following elements:

Environment Agents exist within a social network envi-
ronment. Such an environment provides access to op-
erations regarding agents’ locations. For example, an

agent may use its environment to discover neighboring
agents.

Relations The relationships between agents are stored in
the form of relations. These relations are analogous
to mathematical ones: they are ordered pairs of ele-
ments. Each scenario may have several relations and
each of them represents a particular kind of relation-
ship. Agents may access and manipulate these rela-
tions. In particular, they can change them dynami-
cally as the simulation unfolds.

Stimuli Agents can communicate with any other agents
within the simulation, even with those to which they
are not related. For this purpose, each agent imple-
ments an interface that can be accessed by others, the
IStimulusReceiver. References to other agents, in
the form of IAgent interfaces, can be obtained in sev-
eral ways (e.g., querying the environment as explained
above). Once an agent holds a reference to another,
it may send “him” a stimulus, which is the structure
responsible for transmitting information to agents.

Agent behavior must be implemented in the step() method
of the IAgentControl interface. At every instant a simula-
tion cycle is performed and the container calls this method
for each agent in the simulation. Hence, time is discrete and
equal for all agents, which act one after another during each
cycle.

5.1.2 Property Components
Like agents, properties are a kind of component and are

instantiated in scenarios. Their purpose is to provide as-
sertions that experimenters might want to test, analyze or
store concerning agents and their environment. Properties
generate outputs in the form of numbers, truth values and
text. How such values are calculated is entirely up to their
developers.

Properties have targets. Either individual agents or their
environment can be targets. Moreover, one property in-
stance can be targeted at several different elements. The
experimenter writing the scenario is responsible for instan-
tiating properties and assigning targets to them.

The fact that properties are chosen by the experimenter
facilitates abstraction during simulation analysis. It is pos-
sible to focus simulation resources only on what is impor-
tant during a particular experiment, while still being able
to change such a focus in later experiments (i.e., by instan-
tiating different properties). Furthermore, new analysis can
be performed as new properties are developed.

Since we assume that agents are organized in social net-
works, it is possible to provide several reusable properties.
For example, in [17] several measures concerning such net-
works are defined (e.g., prestige, centrality).

5.2 Scenarios and Experiments
Scenarios and experiments descriptions are designed with

the following goals:

• They must be easy to write even by non-programmers;

• It must be easy for other tools to read and write them
(i.e., to allow interoperability of tools);

• They must make full use of domain assumptions, in
order to keep them as elegant as possible.
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To this end, they are specified as XML (Extensible Markup
Language) [16] files following special markup languages. Both
are abstractions for experimenters, not component design-
ers.

5.2.1 Scenarios
A scenario defines an initial state for the simulation, built

on top of the available components. It is formed by agents,
properties and relations declarations. Concerning agents
and properties, the following must be specified: (i) the com-
ponent’s identifier from which the agent is instantiated; (ii)
the name and a unique identifier for the agent; (iii) prim-
itive parameters to be used when instantiating the agent;
and (iv) parameters in the form of lists to be used when
instantiating the agent. Furthermore, properties must have
targets (i.e., the objects used to calculate the value of the
property), which can be either individual agents or the whole
environment.

As for relations, the following is necessary: (i) a name,
unique identifier and description for the relation; (ii) its
several relational ties. Each tie indicates that some agent
is related to another agent, using the agent’s ids.

Figure 3 presents the general form of a scenario file.
Notice that the declaration of relations arise from the fact

that our approach assumes that agents are arranged in social
networks. If no such assumption existed, then it would not
be possible to define such a simple markup.

5.2.2 Experiments
An experiment define which simulations should be per-

formed. As the name suggests, experiments are created in
order to discover new information or test hypothesis about
a scenario. Each experiment contains the instantiation of
one or more simulation strategies, which are simulation al-
gorithms provided by the container. Different strategies an-
swer different questions and, thus, are suitable for different
experiments.

In the present version of our system, we have implemented
the following two strategies:

Standard simulation The straightforward simulation of
a scenario, without any special algorithm. Changes
to the scenario are simulated according to the behav-
ior of its agents. The final state is presented to the
user. Broadly speaking, this strategy is analogous to
the kind of simulation that the tools reviewed in Sec-
tion 2 usually provide. In our system, however, this is
just a special case;

Stimulus delivery optimization Provides a way to dis-
cover to which subgroup of agents a specified stimulus
should be delivered in order to maximize the value of
some property of interest (e.g., the spreading of infor-
mation in a social network, which is a usual question
concerning such networks). To this end, several simu-
lations are performed, each one considering a particu-
lar subgroup of agents. When the strategy finishes, it
presents the list of the best agents to which the spec-
ified stimulus should be delivered. Figure 4 presents
the general form of an experiment employing this strat-
egy. Notice that this strategy employs the assumption
of stimuli-based agent communication.

While we realize that only two strategies provide a limited
repertoire, the architecture is designed to allow the imple-

<scenario name="###" description="###">

<agent component-id="###" id="###" name="###"/>
<primitive-parameter name="###" value="###"/>
<primitive-parameter name="###" value="###"/>
(...)

<list-parameter name="###">
<parameter-value value="###"/>
<parameter-value value="###"/>
<parameter-value value="###"/>

</list-parameter>
(...)

</agent>
(...)

<!-- Other similar <agent></agent>
declarations come here -->

<property component-id="###" id="###" name="###">
<primitive-parameter name="###" value="###" />
<primitive-parameter name="###" value="###" />
(...)

<agent-target id="###" />
<agent-target id="###" />
(...)

<environment-target />
</property>
(...)

<!-- Other similar <property></property>
declarations come here -->

<relation id="###" name="###" description="###">
<tie id1="###" id2="###"/>
<tie id1="###" id2="###"/>
(...)

</relation>
(...)

<!-- Other similar <relation></relation>
declarations come here -->

</scenario>

Figure 3: The general form of a scenario file. The
“###” marks indicate that the text should be cho-
sen by the user. The “(...)” marks denote possible
repetition of the previous element.

mentation of new strategies (e.g., by providing a suitable
base class for later extension). In fact, we are currently
developing other kinds of strategies (e.g., other kinds of op-
timizations, pattern recognition). And since domain-specific
assumptions are available to the strategies, we think that a
varied and useful repertoire can be created.

6. CASE STUDY: MODELLING DIFFUSION
IN SOCIAL NETWORKS

Let us now study a concrete example to illustrate how the
proposed approach can improve model reuse. Following the
method given in Section 4, we shall first examine one kind
of agent and define a component that captures its behavior
(Section 6.1). We then show how it can be reused to create
scenarios and experiments in two rather different simulation
domains, namely, Epidemiology (Section 6.2) and Marketing
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<experiment name="###" description="###" >
<stimulus-delivery-optimization

name="###" runs="###" iterations-per-run="###"
property-id="###" targets="###">

<agent-target id="###" />

<stimulus type="###" content="###">
<referenced-agents>

<agent id="###"/>
(...)

</referenced-agents>
</stimulus>

</stimulus-delivery-optimization>
(...)

</experiment>

Figure 4: The general form of a stimulus delivery
optimization experiment. The “###” marks indi-
cate that the text should be chosen by the user. The
“(...)” marks denote possible repetition of the pre-
vious element.

(Section 6.3).

6.1 A Reusable Agent Component
In social networks, an important issue concerns how re-

sources are diffused among agents. That is, given that a
particular group of agents in the network holds a resource,
one wishes to study how they transmit it to the other agents
over time. This sort of study can be influenced by several
factors, such as the network structure (e.g., diffusion is usu-
ally faster in a network in which every agent has many of
neighbors) and the behavior of agents (e.g., agents may be
specially susceptible to particular kinds of resources).

These resources can be many things. For example, they
may represent opinions, information, diseases or money, just
to name a few. It is in this variety that the possibility of
model reuse is: since many problems can be cast in terms
of resource diffusion over social networks, we may ask our-
selves if it would also be possible to program a single agent
component that could be used to simulate all of these prob-
lems.

And, indeed, we can program it. To achieve this, it suf-
fices to look for the agent parameters necessary to describe
diffusion. The following are frequently used:

• Resource possession. A boolean value that indicates
whether the agent holds the resource.

• Transmission rate. A probability that indicates how
likely an agent is to transmit a resource to his neigh-
bors.

• Susceptibility. A probability that indicates how likely
an agent is to accept a resource transmitted to him by
a neighbor.

• Immunity. A boolean value that indicates whether
an agent becomes immune to transmission after it has
held the resource at least one time.

Then it is simply a matter of programming an agent com-
ponent that implements exactly the behavior specified by
these parameters. Figure 2 showed some annotations that

provide the meta-information about the component. In or-
der to use the component, an experimenter must only write
a scenario where agent instances are specified as instantia-
tions of this component.

For convenience, let us call the above parameters as dif-
fusion parameters and the agents that employ them as dif-
fusion agents.

6.2 Reuse in an Epidemiological Simulation
A central concern of Epidemiology is how diseases are dis-

seminated among a population. One approach to studying
this problem is modelling the population as a social network
of agents (e.g., [1]) and employing diffusion parameters asso-
ciated with particular diseases. Using our agent component,
an experimenter could proceed, for instance, in the following
way:

1. Choose a social group that can be modeled as a so-
cial network (e.g., in [1] such a network is given for a
particular social group).

2. Write a scenario file that describes the instantiations of
the diffusion agent component. Each instance must be
assigned parameters. Typically, these parameters will
reflect what is known about the disease and the social
group being analyzed. For example, diseases which are
highly contagious will have a high transmission rate.
The style of the scenario file is always the same, similar
to what was shown in Figure 3.

3. Write an experiment to simulate the scenario, using
the standard simulation strategy of Section 5.2.2.

4. Run the simulation system specifying the input sce-
nario and experiment.

5. Examine the final state of the social network to see
how many agents were infected in the end.

In order to analyze several possible situations, the exper-
imenter may create several scenarios, which vary only in
some characteristic of interest (e.g., the agents initially in-
fected). Moreover, these scenarios can be shared by many
experimenters, each one analyzing different questions.

6.3 Reuse in a Marketing Simulation
In Marketing, product advertisement is of great impor-

tance. Typically, given a fixed budget, one wishes to make
sure an advertisement reaches the largest possible group of
consumers. One way to achieve this is to rely on the so-
cial network structure that connects consumers: they have
friends and usually talk about products they know to each
other. By advertising to the correct consumers, one can
reach consumers that have not been exposed directly to the
advertisement.

Transmission rate and immunity diffusion parameters can
be used to model this kind of information spread over social
networks, as shown in [12]. Using this sort of modelling, an
experimenter can proceed in a manner similar to the epi-
demiological simulation we saw above, but with some par-
ticularities.

The social network structure for the target audience must
be available. In general, this might be hard to obtain. How-
ever, in some particular domains it is feasible. For example,
if the target audience is an online community (i.e., a website
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in which users have personal pages and provide links to their
friends), it is easy to extract a social network: it suffices to
analyze the link structure between user pages.

To perform experiments, it is better to employ the stimu-
lus delivery optimization strategy presented in Section 5.2.2.
To do so, one first estimates how much it costs to advertise
to an individual consumer. Then, one divides the avail-
able advertisement budged by the cost per consumer. This
gives the size k of the subgroup required by the simulation
strategy. Finally, we must specify a property to work as
an objective function. We can use a simple standard prop-
erty that counts how many agents have been reached by the
advertisement.

After running the experiment, the user gets a list of the k

best agents to which the advertisement should be delivered
in order to maximize network diffusion.

7. CONCLUSION
In this paper we presented a method and a related im-

plementation architecture for reusing model parts in multi-
agent simulation. Our method is based on special software
components, which represent agents and properties about
agents. These components are instantiated in scenarios,
which are also reusable assets. Experiment files define how
to perform simulations and can be applied to multiple sce-
narios.

The case study presented a simple example of an agent
component that is useful in distinct simulation problems. In
that example, reuse was achieved entirely without Java pro-
gramming, employing only simple XML declarations. Such
simple solutions, however, depend on the possibility of cre-
ating component families flexible enough so that many in-
teresting scenarios can be assembled. We showed that this
is possible in this simple case, but more research needs to
be done in order to assess this possibility in more general
terms.

We have emphasized the domain specific nature of our
simulation system. Of course it would be better to have
a simulator capable of providing facilities for all kinds of
domains. However, our point is that the simulator infras-
tructure should have as many assumptions as possible about
what is being simulated in order to provide more useful
mechanisms. In this paper, we argued that the method out-
lined in Section 4 is useful with some particular assump-
tions (e.g., social network environments). But the same
components-scenarios-experiments method could be applied
using different assumptions (e.g., grid-based environments),
though, in this case, a different implementation would also
be needed.

Another relevant point regards the creation of scenarios.
Small scenarios can be composed by hand, but scenarios
that capture a large network of agents (e.g., with thousands
of agents) need special tool support to be generated. Our
XML representation should facilitate interoperability with
such tools.

Finally, in order to facilitate the automatic analysis of
simulations, we have provided a special kind of component,
called property. However, no method of making logical as-
sertions (e.g., “such and such property must have a partic-
ular value”) is currently available. Therefore, the next step
in this direction is to provide an appropriate logical frame-
work, which will allow the creation of more sophisticated
simulation strategies.
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