Sumário

Reforço de elementos estruturais de concreto com sistemas de polímeros reforçados com fibras (FRP) aplicado externamente

Parte A - PROJETO 1
1 INTRODUÇÃO 3
1.1 SISTEMAS DE REFORÇO EXTERNAMENTE ADERIDOS 5
1.1.1 Sistemas curados no local 5
1.1.2 Sistemas pré-fabricados6
1.2 SISTEMAS CURADOS NO LOCAL
1.2.1 Sistema previamente impregnado 7
1.2.2 Sistema impregnado no local
1.3 SISTEMAS PRÉ-FABRICADOS 7
1.3.1 Sistemas pré-fabricados aderidos à superfície7
1.3.2 Sistemas pré-fabricados inseridos no cobrimento do concreto 7
1.3.3 Sistemas pré-fabricados protendidos
1.4 SISTEMA DE CINTAMENTO
2 PROPRIEDADES DOS MATERIAIS COMPONENTES DO SISTEMA FRP
2.1 GERAL
2.2 FIBRAS CONTÍNUAS9

2.2.1 Carbono	10
2.2.2 Vidro	10
2.2.3 Aramida	. 10
2.2.4 Basalto	11
2.2.5 Aço de alta resistência	11
2.2.6 Fibras vegetais	11
2.3 MATRIZES	. 12
2.4 POLÍMEROS REFORÇADOS COM FIBRA – FRP	12
2.5 ADESIVOS	. 14
2.6 CARACTERÍSTICAS À FLUÊNCIA	16
2.7 CARACTERÍSTICAS À FADIGA	16
3 DURABILIDADE DE SISTEMAS FRP	17
3.1 RADIAÇÃO ULTRAVIOLETA	17
3.2 UMIDADE	. 21
3.3 TEMPERATURA ELEVADA	23
3.4 AMBIENTES ALCALINOS E CORROSÃO	24
4 PRINCÍPIOS DE PROJETO E ANÁLISE ESTRUTURAL	<i>.</i> 27
4.1 Princípios básicos	27
4.2 Estados limites	27
4.3 Ações e influência ambiental	28
4.3.1 Ações	28

4.3.2 Influência ambiental28
4.4 Modos de ruptura no estado limite último sob ações estáticas 29
4.5 Capacidade de deformação no estado limite último 31
4.6 Verificação da estabilidade em caso de perda acidental de FRP 32
4.7 Efeito do reforço no comportamento geral da estrutura 32
4.8 Análise estrutural
4.9 Projeto e proteção contra incêndio
4.10 Coeficientes de ponderação
5 ADERÊNCIA 35
5.1 Modos de ruptura devido à perda de aderência
5.1.1 Descolamento na extremidade do FRP36
5.1.2 Descolamento devido a fissuras intermediárias de flexão e força cortante 37
5.1.3 Descolamento devido a irregularidade na superfície da viga 38
5.2 Verificação de segurança com relação à perda de aderência 38
5.2.1 Comprimento efetivo de ancoragem
5.2.2 Resistência última de descolamento da extremidade da zona de ancoragem 41
5.2.2.1 Solução baseada na relação tensão-deslocamento bilinear 41
5.2.2.2 Solução baseada na abordagem "projeto por teste"
5.2.2.3 Resistência última de descolamento na região de fissuração intermediária 4
5.2.2.4 Método simplificado
5.2.2.5 Método preciso 42

6 DIMENSIONAMENTO NO ESTADO LIMITE ÚLTIMO (ELU) DE ACORDO COM A CEBFIP 90 (2019) ... 43

6.1 Geral	43
6.2 Reforço à flexão simples e composta po	ela técnica EBR45
6.2.1 Descolamento entre fissuras inter	mediárias45
6.2.2 Análise do descolamento de extre	midade 46
6.2.2.1 Redução do FRP assumindo	estado totalmente fissurado 46
6.2.2.2 Ancoragem de extremidade	próximo do ponto de momento zero 47
6.2.2.3 Análise de descolamento em extremidade do reforço	um elemento de concreto entre fissuras na 47
6.2.2.4 Ancoragem mecânica para o	FRP 49
6.2.3 Reforço localizado	49
6.3 Reforço à flexão pela técnica NSM	50
6.3.1 Princípios básicos	50
6.3.2 Análise da capacidade à flexão	50
6.3.3 Decalagem do reforço com a análise	da resistência última de aderência 51
6.4 REFORÇO A FORÇA CORTANTE	53
6.4.1 Princípios básicos	53
6.4.2 Análise da capacidade a força cort	cante 54
6.5 REFORÇO TRANSVERSAL PARA COMB LONGITUDINAL	ATER O DESCOLAMENTO DO FRP
DEVIDO À FLEXÃO	58
6.6 REFORCO AO MOMENTO TORSOR	61

7 DIMENSIONAMENTO NO ESTADO LIMITE ÚLTIMO (ELU) DE ACORDO (OM AC
440.2R (2017) 63	

7.1 Deformação inicial do substrato63	
7.2 Ações e combinações de dimensionamento	
7.3 Dimensionamento ao momento fletor65	
7.4 Dimensionamento à força cortante 67	
8 PUNÇÃO 71	
9 REFORÇO DE PILAR 73	
9.1 Considerações iniciais73	
9.2 Lei constitutiva do pilar confinado por FRP74	
9.3 Dimensionamento do reforço de acordo com o FIB Bulletin 90 (2019)7	5
9.3.1 Resistência à compressão do pilar reforçado	
9.3.2 Pilares confinados	
9.4 Dimensionamento do reforço de acordo com o ACI79	
10 VERIFICAÇÕES NO ESTADO LIMITE DE SERVIÇO (ELS)81	L
10.1 Geral81	
10.2 Análise das tensões 82	
10.2.1 Tensões nos elementos para reforço à flexão	
10.2.2 Controle de tensões de acordo com FIB 9083	

10.2.3 Controle de tensões de acordo com a norma ACI 440.2R (2017)	84
10.3 Fissuração 85	
10.3.1 Controle de abertura de fissuras para elementos de concreto arn	nado
reforçado externamente pelo método EBR 85	
11 DETALHAMENTO DO SISTEMA DE REFORÇO	87
11.1 Especificações 87	
11.2 Representação gráfica	
11.3 Defasagem entre as camadas e ancoragem do reforço	92
12 TÉCNICAS DE APLICAÇÃO DO REFORÇO	95
12.1 Técnica SBR	
12.2 Técnica NSM 97	
12.3 FRP protendido 101	
12.4 Técnica TRC 104	
12.5 Técnica ETS 107	
Parte B - CONTROLE DE QUALIDADE 1	.09
13 CONTROLE DE QUALIDADE 111	L
13.1 Avaliação e preparo do substrato de concreto	
13.1.1 Inspeção visual 111	
13 1 2 Avaliação da resistência mecânica do substrato 112	

15	S REFERÊNCIAS	125
1 4	ENSAIOS DE CARACTERIZAÇÃO	123
	13.5.1 Ensaio de arrancamento – Pull Off	120
13	3.5 Ensaios de avaliação da aderência do FRP	120
13	3.4 Sistemas de proteção e acabamentos	. 119
13	3.3 Recomendações para aplicação do reforço de FRP	118
13	3.2 Especificação das resinas1	.15
	13.1.5 Preparo do substrato	4
	13.1.4 Avaliação da umidade na aplicação	113
	13.1.3 Avaliação da corrosão da armadura	112