

European Project Nº: FP7-614154

Brazilian Project Nº: CNPq-490084/2013-3
Project Acronym: RESCUER

Project Title: Reliable and Smart Crowdsourcing Solution

 for Emergency and Crisis Management

Instrument: Collaborative Project
European Call Identifier: FP7-ICT-2013-EU-Brazil

Brazilian Call Identifier: MCTI/CNPq 13/2012

Deliverable D1.5.2
Integrated Platform Demonstrator 2

Due date of deliverable: PM20

Actual submission date: October 12, 2015

Start date of the project: October 1, 2013 (Europe) | February 1, 2014 (Brazil)
Duration: 30 months
Organization name of lead contractor for this deliverable: VOMATEC International GmbH
(Vomatec)

Dissemination level

PU Public
PP Restricted to other program participants (including Commission Services)
RE Restricted to a group specified by the consortium (including Commission Services)
CO Confidential, only for members of the consortium (including Commission Services)

2

Executive Summary
Integrated Platform Demonstrator 2

This document presents deliverable D1.5.2 (Integrated Platform Demonstrator 2) of project FP7-

614154 | CNPq-490084/2013-3 (RESCUER), a Collaborative Project supported by the European
Commission and MCTI/CNPq (Brazil), that targets at supporting emergency organizations by
crowdsourcing information in crisis situations. Full information on this project is available online at
http://www.rescuer-project.org.

Deliverable D1.5 provides the results of Task 1.5 (Integrated Platform Demonstrator) that are
concerned with the design and implementation of an integration platform for all components
developed in the RESCUER project as well as their communication patterns and interfaces.

An integration platform that follows the hub-and-spoke topology was set up using the industry
standard message-oriented middleware RabbitMQ. Consequently, RESCUER components can publish
and subscribe JSON messages based on certain topics. The publish/subscribe pattern leads to a
complete decoupling of sending and receiving components.

D1.5.2 adds to the previous version of this document the definition of the information flow
between mobile devices in the crowd and a portal solution in the command and control centre so
that follow up interaction is supported. Message topics and contents to this intent have been
defined.

Additionally there are data analysis components, which subscribe to messages from the crowd
as well and publish analysis results. Message topics and contents for publishing analysis results have
also been defined, but it is in the purpose of next iteration to investigate them more in-depth as well
as to define the information flow from the command centre to the crowd for crowd steering and
public communication purposes.

List of Authors

Silas Graffy – Vomatec (1st Version)
Matthias Breyer – Vomatec
Laia G. Pedraza – Vomatec

List of Internal Reviewers

Tobias Franke – DFKI (1st Version)
Taslim Arif – Fraunhofer
Vaninha Vieira – UFBA (1st Version)
Andreas Poxrucker – DFKI (2nd Version)
Rebeca Barros – UFBA (2nd Version)
Karina Villela – Fraunhofer (2nd Version)

http://www.rescuer-project.org/

3

Contents

1. Introduction .. 5

1.1. Purpose ... 5

1.2. Change Log .. 5

1.3. Partners’ Roles and Contributions .. 6

1.4. Document Overview ... 6

2. System Integration Approach ... 7

2.1. Functional Decomposition and Integration Platform Approaches ... 7

2.2. Building a Central Integration Platform .. 7

2.3. Excursus: Rabbit MQ ... 8

2.4. Configuration and Persistence in the Integration Middleware .. 11

3. Prototype of the Integrated Platform Demonstrator ... 13

3.1. Overview ... 13

3.2. Definitions and Infrastructure... 14

3.3. Information Flow... 15

3.4. Information Flow from the Crowd .. 15

3.5. Information Flow from the Context Components .. 19

3.5.1. Outputs from Incident Aggregation .. 20

3.5.2. Outputs from Data Sorting consumed by Data Analysis Solutions 22

3.5.3. Outputs after a request of Context ... 22

3.6. Information Flow from the Analysis Components .. 23

3.7. Information Flow from the Command and Control Centre .. 25

3.8. Information Flow for Follow-Up ... 25

3.8.1. Follow-Up .. 26

3.8.2. Group-Target Follow-Up ... 27

4. Integration Platform Quality Requirements ... 29

4.1. Overview ... 29

4.2. Scalability .. 29

4.3. Data Persistence ... 30

4.4. Performance ... 30

4.5. Security ... 31

4

5. Roadmap for Future Work .. 32

6. Conclusion ... 33

Glossary .. 34

Appendix A .. 35

Appendix B .. 36

Appendix C .. 46

5

1. Introduction

1.1. Purpose

The RESCUER project aims at developing a smart and interoperable computer-based solution for
supporting emergency and crisis management by a crowdsourcing approach, with a special focus on
incidents in industrial areas and on large-scale events. The idea is to enable crowds (workers in
industrial areas and visitors of large-scale events) to directly interact with the command and control
centre, for example by sending so-called ‘incident reports’ through a smartphone app. Both the
concept and the objectives of the RESCUER project are described in the Description of Work (DoW),
which is part of the EC Grant Agreement (Annex I).

The purpose of this document (D1.5.2: Integrated Platform Demonstrator 2) is to describe the
prototype developed in Task 1.5 Integrated Platform Demonstrator which aims at integrating the
RESCUER platform components into one demonstrator. In the first iteration the task covered
information gathering from the crowd and sending it to the command and control centre. In this
second iteration the follow up interaction has been defined taking into account target-groups. The
follow up interaction states the communication between the users of the Mobile Crowd Solution
and the Emergency Response Toolkit to allow the exchange of information between them. This is
one of the main features of RESCUER system since it offers the possibility to the command and
control centre to get more accurate and specific information. After receiving initial information
about an emergency situation, the command centre might need further information from people at
the place of the emergency (eyewitnesses or first responders) in order to clarify some uncertainties.
In addition, follow-up interaction mechanisms can be used to check the reliability of a piece of
information. In large-scale events, where there are a huge group of people concentrated in a wieldy
area, the idea is to get a broader overview of the situation without overloading people with several
questions; different groups of people could be asked different questions and the answers together
would improve situation awareness. For that, is necessary to spot people in the crowd to join a
target group.

This deliverable will be modified and improved together with the respective prototype during
the next iteration.

1.2. Change Log

This deliverable is a living document and extends the contents of D1.5.1. The main changes are
in section 2.4, which includes new configurations to achieve safe system recovery. Chapter 3 has
been completed with the new flows for follow-up interaction and for the Context Components.
Chapter 4 discusses the different requirements which we are more concerned to.

6

1.3. Partners’ Roles and Contributions

VOMATEC was responsible for coordinating the elaboration of this document. VOMATEC also
contributed with the implementation of the integration platform, which enables all components to
exchange messages.

1.4. Document Overview

The remainder of this document is structured as follows.
• Chapter 2 explains the general idea and the approach of the integration platform.
• Chapter 3 explains how the integration platform has been set up and the Integrated

Platform Demonstrator has been developed.
• Chapter 4 discusses the requirements taken into account.
• Chapter 5 analyses which are the further steps to take.
• Chapter 6 describes the conclusions drawn after improving and working with the first

prototype.

7

2. System Integration Approach

The RESCUER system is composed of different components built using different software
platforms. This chapter describes the approaches to achieve communication between components
and how the integrated system satisfies RESCUER persistence requirements.

2.1. Functional Decomposition and Integration Platform Approaches

A functional decomposition of the overall set of RESCUER features resulted in different
components developed by different project partners (see D1.2.2 System Architecture 2). To build up
the overall Integrated Platform Demonstrator, those building blocks have to exchange information.

A naive approach would be that every component has a direct communication interface to every
other component. For n components this point-to-point (or peer-to-peer) integration pattern would
lead up to n*(n-1)/2 interfaces – and, even worse, each component could have its own technical and
logical definition. This approach is not feasible, in practice, since it makes the overall system
maintenance quite difficult, especially when components are changed, added, or removed.

A better approach for an integration pattern is hub-and-spoke. This means that there is (usually)
one central component (the hub) that has a communication interface to every other component (the
spokes). No other communication interface is allowed. In this case, for n components there are only
n interfaces. Every time a component is changed, added, or removed a single communication
interface (the one between the component and the hub) has to be adjusted. This approach simplifies
the overall system maintenance and makes it easy to change and extend it.

2.2. Building a Central Integration Platform

A simple approach to build a hub-and-spoke based integration platform would be to design and
implement a hub as a domain-aware central middleware. This middleware would provide an
information exchange platform, and deal with crosscutting concerns (e.g., central data persistency,
user roles and access control management, components management, among others). However,
such a solution has significant drawbacks, both technical and from a project management point of
view.

From a technical perspective, providing our own implementation of a hub integration platform
makes it difficult to guarantee non-functional requirements like high availability and reliability,
scalability, security (for example, transparent transport layer encryption), support to different client
platforms and operating systems, among others. From a project management point of view, this
would end up in a dependency of every system component. However, after a publicly funded
research project like RESCUER ends, the partners may lack budget to maintain the components that
other partners depend on. This approach would make the economic exploitation of the project
results quite complicated, since a lot of bilateral contracts would have to be signed.

8

To overcome the drawbacks of a hub implementation, an existing industry standard component
can be used. In RESCUER we have opted for this solution and chosen RabbitMQ1, a message-oriented
middleware, for that task. RabbitMQ was mainly chosen because of its interoperability, scalability,
and performance advantages. Other considered alternatives, including but not limited to Open
AMQ2, ejabberd3, Apache ActiveMQ4, Open Message Queue5, ZeroMQ6, MassTransit7, Microsoft
BizTalk8, and Apache Camel9, were discarded for different reasons. Some of them do not support all
needed platforms and programming languages, others do not provide infrastructure features like
transport layer security out of the box. Some middleware systems mainly target on integrating
legacy applications instead of integrating new ones. Other middleware systems also use
communication protocols that imply in disadvantages because they have a bad performance or
target on other use cases. From the remaining systems, RabbitMQ was selected for being a widely
spread industry standard offering a lot of community and also commercial support.

In RabbitMQ, and most other message-oriented middleware solutions, every component in a
system (the spokes) can send messages with a certain topic to the hub. On the other hand, each
component in the system can subscribe to messages of one or more topics. Using topics instead of
addressing messages to a certain receiver, we completely decouple senders and receivers of
messages. A sender does not have to care if there is a receiver for its message or not, or if there
might be several receivers. The sender just sets the topic of the message and pushes it to the
middleware. Furthermore, a receiver of a message (subscriber to a topic) does not have to care if
there is one (or more) sender of messages with the subscribed topic or not. This level of decoupling
together with the usage of an industry standard message exchange protocol (AMQP, Advanced
Message Queuing Protocol) makes it as easy as possible to introduce, remove, and change
components in the RESCUER Integrated Platform Demonstrator. In enterprise application
integration, this approach is usually referred to as event-driven architecture, where sending a
message is considered an event.

2.3. Excursus: Rabbit MQ

RabbitMQ is a message broker using the networking protocol AMQP; it enables communication
between different applications accepting and forwarding messages with binary data.

The basic concepts of RabbitMQ are producer, consumer, and queue. A producer is an
application that sends messages to the broker (producing messages). A consumer is an application
that receives messages from the broker (consuming messages). When the messages arrive to the
broker, they are stored in queues. A queue is a buffer and it has no storage limit. A queue can be

1 https://www.rabbitmq.com/
2 http://www.openamq.org/
3 https://www.ejabberd.im/
4 http://activemq.apache.org/
5 https://mq.java.net/
6 http://zeromq.org/
7 http://masstransit-project.com/
8 http://www.microsoft.com/en-us/server-cloud/products/biztalk/
9 http://camel.apache.org/

9

filled by several producers, and consumed by several consumers. The consumers, producers, and the
broker do not need to run on the same machine.

Queues have a durability property to be configured. A durable queue is stored in the disk and in
case that the system reboots, e.g. because of a crash, the queues are not lost but set again.
Messages have the persistence property. It also means that they are stored in the memory and
therefore recoverable in case of a system reboot. Thus, a persistent message queued in a durable
queue will be recovered in case of a fail of the system. This is a property that can be chosen by the
producer of the message.

The producers send messages to an exchange. The exchange is in charge of receiving messages,
and routing and pushing them into a queue or several queues, or discarding them. Figure 1 shows a
simple example of a message routing. A producer sends a message to RabbitMQ which is handled by
the exchange. The exchange routes the message to a single queue. This queue is consumed by only
one consumer, which gets this message.

An exchange and a queue are linked by a binding; which is the rule that the exchange follows to
route the messages. The rule that defines what should be done with a message, which is the
meaning of a binding, depends on the exchange type. The exchange types are: direct, fanout, topic,
and headers.

Figure 1: Diagram of general message routing in RabbitMQ (Source: RabbitMQ AMQP Concepts10)

• Direct: messages are sent with a routing key and are pushed to queues bound to the
exchange with exactly the same routing key (Figure 2).

10 https://www.rabbitmq.com/tutorials/amqp-concepts.html

10

Figure 2: Direct exchange (Source: RabbitMQ AMQP Concepts10)

• Fanout: messages are broadcasted to all queues bound to the exchange which does not take
into account any routing key (Figure 3).

Figure 3: Fanout exchange (Source: RabbitMQ AMQP Concepts10)

• Topic: messages are routed to queues that have a pattern as routing key matching the topic
of the message. The idea is to get messages from several publish/subscribe pattern
variations.

• Headers: messages are routed following the attributes of the message header. The exchange
ignores the routing key.

11

In the RESCUER system, a message may be consumed by different modules for different
purposes. Each module fetches the messages depending on different properties, leading to different
routing keys patterns. Therefore, the most suitable exchange for our case is the topic exchange. A
header exchange would be possible as well, but this would lead to a higher complexity without
adding value, since all RESCUER requirements are already met by the topic exchange type.

The topic exchange uses routing keys structured as a list of words separated by dots (e. g.
“lazy.brown.dog”). These words are meant to reflect a property of a message, so the consumers can
consume only the messages they are interested in. The number of characters in such a phrase is
limited to 255. Words can be substituted by the placeholders “*” or “#”. The placeholder “*” means
whatever word, but exactly one word, and the placeholder “#” means whatever zero or more words,
e. g. with routing key “#” all messages will be consumed. These placeholders are used to provide
flexibility when using patterns; otherwise the topic exchange would act like the direct exchange.
Figure 4 shows an example of using patterns as routing keys, where each queue is bound with a
routing key pattern. This means that the arrived messages would be saved in the queues if their
routing key follows this pattern.

Figure 4: Topic exchange using patterns as routing keys (Source: RabbitMQ Topic Exchange11)

For more details about exchange types and message routing see the AMQP explanation12 of
RabbitMQ.

2.4. Configuration and Persistence in the Integration Middleware

To define the topics and contents for the messages managed by senders and receivers, we need
to know the information needed and provided by the RESCUER components. A questionnaire was
set up and answered by each developer of a RESCUER component. The questionnaire is attached in
appendix A and the answers are in appendix B.

The questionnaire was used to collect the information needs of each RESCUER component. In
addition, it also asks for the information they offer. The information offered by each component
defines the messages published by the component. The information needs define the messages to

11 https://www.rabbitmq.com/tutorials/tutorial-five-python.html

12 RabbitMQ: AMQP 0-9-1 Model Explained. https://www.rabbitmq.com/tutorials/amqp-concepts.html.

https://www.rabbitmq.com/tutorials/amqp-concepts.html

12

be consumed. The information needed by all components also determine the definition of the
routing keys. Several components might want the same message depending on different properties.

An example is: the Mobile Crowdsourcing Solution (MCS) publishes the messages created by the
crowd; the text analysis component wants to consume these messages but only the ones containing
text; the video analysis component only wants the ones containing video; the image analysis
component only wants the ones containing images; and the emergency response toolkit wants all of
them – plus the analysis results afterwards. In this case, the attributes of the messages coming from
the crowd that are interesting for each component are known. This is explained deeply in Chapter 3.

The questionnaires also asked for the platform and the programming language used for the
implementation of the component. This information was considered in order to choose a message
broker with client libraries available for all needed technology stacks as well as to find a suitable way
to serialize and deserialize the message contents. Thus, RabbitMQ was chosen taking into account
that there are available libraries for both aspects (sending/receiving of messages and
serialization/deserialization of their contents) for all platforms and programming languages used in
the project.

Based on the received answers, a topic pattern was defined for RabbitMQ messages and a
structure was defined for their contents. To serialize the message contents, the project consortia
agreed to use JSON (JavaScript Object Notation), encoded in UTF-8.

It is important that components consuming data take into account that the queue to consume
messages is created the first time it is defined. From then on, even if the component breaks down or
turns off, the queue is not removed, if there is not an explicit request for this. However, the data
received before the queue is defined is not saved to this queue. Therefore, the system should start
consuming data at the first possible moment. In case of the mobile devices, this should be as soon as
they are installed and started.

Persistency of messages is a requirement of the ERTK. In case the integration middleware breaks
down, the queues and messages have to be re-established. As already explained, RabbitMQ offers
this possibility through the setting of queues as durable and the setting of messages as persistent.
This means that, in case of a system fail, during its restart, the durable queues would be redefined
and the persistent messages added again into these queues. All queues not set as durable would be
lost and messages not set as persistent would not be saved in order to be added later on.

13

3. Prototype of the Integrated Platform Demonstrator

3.1. Overview

The Integrated Platform Demonstrator is responsible for ensuring the connection between the
RESCUER platform components.

The RESCUER platform components are:
• Mobile Crowd Sourcing Solution – Part for actively sending incident reports.
• Mobile Crowd Sourcing Solution – Part for passively recording crowd density data, a.k.a.

Crowd Sensing Solution. It consists of a sender on the mobile devices themselves and a
sensor data receiver, which aggregates the data received and is connected to the
integration platform.

• Data Analysis Solutions:
o Text Analysis Component
o Image Analysis Component
o Video Analysis Component

• Emergency Response Toolkit, which consists of the user interface (web portal) and a
subcomponent that cares about data transfer.

• Context Components, which aggregate, store, sort crowd data, the outputs of the
analysis components and other context information, and offers this context information
to the other RESCUER components. It includes the Data Sorting component and the
Incident Aggregation component.

Each of these components needs to send and receive data to and from the others. Figure 5
shows a high-level overview of the message exchange between RESCUER components that are
within the scope of the second project iteration.

The first project iteration focused on information gathering. The second iteration concentrates
on covering group-targeted follow-up interaction. For this purpose, the data format has been made
dynamic to provide flexibility, and new routing keys were defined to establish the follow up
communication.

14

Figure 5: RESCUER Components Overview 1

3.2. Definitions and Infrastructure

- We use a single exchange of type ‘topic’ in RESCUER. The name of the global topic exchange,
where messages have to be sent to, is “RESCUER_Global_Topic_Exchange”.

- VOMATEC has set up a RabbitMQ server, connection details have been sent by e-mail to the
consortia members, since this deliverable is public.

- From a RabbitMQ’s point of view, message payload is just a byte array. Instead of passing
bytes around in RESCUER, message payload for us is a JSON object. Details are defined in the
following section of this document. The message payload is encoded using UTF-8.

- Messages could contain binary data, for example images and videos sent from the crowd.
Those BLOBS are not directly included as part of the message payload in RESCUER, so they
are not uploaded to RabbitMQ. Instead, they are uploaded to an Amazon server, where the
files can be accessed through HTTP GET. Therefore only the URL to the uploaded data is
placed in the JSON structure of the message payload.

- DFKI has set up the storage server, connection details have been sent by e-mail to the
consortia members, since this deliverable is public.

- In general, message topics follow the following pattern:

15

o The topic starts with a constant for the subject like “crowdmessage” followed by a
point (.).

o Then the topic continues with none, one, or many subject-specific parameter values,
separated by a dot (.), for example “true.5.red”. The amount of parameter and the
allowed parameter values are defined for each type of information flow in the
sections below.

o The characters “#” and “*” have special meanings, so they have to be avoided when
setting a topic. When subscribing to a topic pattern, “*” is a placeholder for exactly
one word and “#” for zero to multiple words.

3.3. Information Flow

The different queues used in the RESCUER Integration Platform are defined depending on the
information flows of the system. The information flows covered in this document are defined by the
use cases listed below and described in D1.1.2 (Requirements Specification 2).

The use cases regarding the information sent from the crowd using the MCS are:
• UCMBL03 – Send Incident Notification.
• UCMBL04 – Send Report.
• UCMBL05 - Answer Follow-up Information.

This information is consumed by the Context components, which aggregate the data, store it and
share the updated context with the other components.

The use cases regarding the data for the ERTK are:
• UCETK06 – Ask Follow-up Information.
• UCETK07 – Display Emergency.
• UCETK08 – Display Incident.
• UCETK09 – Display Report.
• UCETK11 – Coordinate Forces.

The use case UCETK11 has been excluded of the project scope after the first project review
meeting.

3.4. Information Flow from the Crowd

Information flow from the crowd can be separated in crowd sourcing and crowd sensing. Crowd
sourcing means that people in the crowd actively send data using their mobile devices. These data
originate the incident reports. Crowd sensing works in the mobile devices of the people in the
crowd. It passively gathers sensor information and sends it as a continuous stream, e.g. to estimate
crowd density. Since this is a continuous stream of data, a message-based approach is not suitable.
Therefore, there is a dedicated sensor data receiver, which aggregates crowd sensing data in order
to provide the current crowd density (overall output of crowd sensing solution). Its results can be
accessed via HTTP GET. The format is defined in appendix C, the URL is consortia-internal and has

16

been distributed via e-mail by DFKI. By polling it, an interested component like the ERTK could
decide on its own in which interval it wants to receive updates. However, this has the drawback that
coupling between components gets tighter since the interested component, the ERTK, has to know
where to get the data from. Therefore, in the last project iteration a new approach with an
abstraction component may be set up.

The crowd sourcing has two variants: the Incident Reports or Notifications and the Follow up.
The first one is depicted in this section, but the follow up is treated in Section 3.8.

Table 1 defines how Incident Reports and Incident Notifications (UCMBL03 and UCMBL04) are
actively sent from the MCS.

Message topic: crowdmessage.<text>.<image>.<video>.<role>

Table 1: Crowd messages topic definition

Parameter Description Value
text Indicates if the message contains text information [true, false]
image Indicates if the message contains one or more

images
[true, false]

video Indicates if the message contains one or more videos [true, false]
role Indicates the role of sender [civilian, supporting,

workforce]

Using the topic definition for crowd messages, the image analysis component can subscribe to
the topic pattern “crowdmessage.*.true.*.*” or even “crowdmessage.*.true.#”, for example. The
ERTK subscribes to “crowdmessage.#”. The MCS instance that wants to send an incident report
written by a workforce, that contains text and video but no images will do so by publishing a
message with the topic “crowdmessage.true.false.true.workforce”.

The idea behind the sender role being part of the topic definition is that messages sent by a
workforce can receive higher priority than other messages. To be able to do this in an elegant way,
they can be filtered by defining different binding keys when subscribing to a queue.

The Incident Notification and Incident Report share the same data structure (see below). The
difference is that the Incident Notification only sends the keyword with other basic metadata.

Incident Report Content

The JSON format of an incident report sent by the MCS is depicted below. Each element inside a
report is georeferenced when possible, e.g. images, videos or the position of the user when sending
the report (“reportSender”).

{
 "reportIdentifier": "113245",
 "reportTimestamp": "2014-07-04T12:48:06.4147832+02:00",

17

 "keyword": "FIRE",
 /*“FIRE”; “EXPLOSION”; “ENVIRONMENT”; “GAS”, “HELP” */
 "reportPosition": {
 "latitude": 47.3742753222995,
 "longitude": 8.5428106828621733,
 "altitude": 0.0
 },
 "reportSender": {
 "personRole": “CIVILIAN”,
 /*“CIVILIAN”; “SUPPORTING”; “WORKFORCE”*/
 "personPosition": {
 "latitude": 47.3742753222995,
 "longitude": 8.5428106828621733,
 "altitude": 0.0
 },
 "movementProfile": [
 {
 "position": {
 "latitude": 47.377275322299504,
 "longitude": 8.5498106828621729,
 "altitude": 0.0
 },
 "date": "2014-07-04T12:48:06.4147832+02:00"
 },
 {
 "position": {
 "latitude": 47.3712753222995,
 "longitude": 8.5468106828621728,
 "altitude": 0.0
 },
 "date": "2014-07-04T12:48:06.4147832+02:00"
 }]
 },
 "mediaPhoto": [
 {
 "mediaPath": "http://exampleURL.com/images/fire3.jpg",
 /*URLofblobstorageserver,see section3.2*/
 "mediaIdentifier": "1132451",
 "size": null,
 "quality": null,
 "type": "image/png",
 "mediaTimestamp": 0,
 "location": {
 "latitude": 47.3742753222995,
 "longitude": 8.5428106828621733,
 "altitude": 0.0
 },
 "accelerometer": [
 {
 "z": 9.4954986572266,
 "y": 1.6761016845703,
 "x": -0.027999877929688,
 "t": 1411057007478
 }],
 "gyroscope":[
 {

18

 "r": -0.0033111572265625,
 "y": 0.0076751708984375,
 "t": 1411057007478,
 "p": -0.003021240234375
 }]
 },
 {
 "mediaPath": "http://exampleURL.com/images/incident.png",
 /*URLofblobstorageserver, see section3.3*/
 "mediaIdentifier": "1132452",
 "size": null,
 "quality": null,
 "type": "image/png",
 "mediaTimestamp": 0,
 "location": {
 "latitude": 47.3742753222995,
 "longitude": 8.5428106828621733,
 "altitude": 0.0
 },
 "accelerometer": [
 {
 "z": 9.4954986572266,
 "y": 1.6761016845703,
 "x": -0.027999877929688,
 "t": 1411057007478
 }],
 "gyroscope":[
 {
 "r": -0.0033111572265625,
 "y": 0.0076751708984375,
 "t": 1411057007478,
 "p": -0.003021240234375
 }]
 }],
 "mediaVideo": [
 {
 "mediaPath": "http://exampleURL.com/data/videos/massa.mp4",
 /*URLofblobstorageserver, see section3.2*/
 "mediaIdentifier": "1132453",
 "size": null,
 "quality": null,
 "type": "video/mp4",
 "mediaTimestamp": 0,
 "location": {
 "latitude": 47.3742753222995,
 "longitude": 8.5428106828621733,
 "altitude": 0.0,
 },
 "accelerometer": [
 {
 "z": 9.4954986572266,
 "y": 1.6761016845703,
 "x": -0.027999877929688,
 "t": 1411057007478
 }],
 "gyroscope":[

19

 {
 "r": -0.0033111572265625,
 "y": 0.0076751708984375,
 "t": 1411057007478,
 "p": -0.003021240234375
 }]
 }],
 “formResponse”:[
 {
 "identifier":"g5d5-gsetg-65hs-sy69",
 "name": "Are you injured?",
 "value": “”,
 "type": "bool",
 “timestamp":"2015-03-24T12:18:27.0804138+02:00"
 }],
 “chatMessages”:[
 {
 "identifier":"y8s5-wq0l-6xcc-omp7",
 "name": "chat",
 "value": “There is a big fire here in the office, please help us!”,
 "type": "text",
 “timestamp":"2015-03-24T10:11:13.240Z"
 }]
 }

3.5. Information Flow from the Context Components

The Context Components are still under implementation therefore the following details are a
draft. Those components consume data from MCS, the Data Analysis Components or ERTK. It
aggregates and stores the data. Depending on the content of the data, it publishes the updated
context to the corresponding component. For example, when a new report arrives in the system, the
Incident Aggregation component assigns it to a new incident or to an existing incident. Then it stores
this information into the database and it sends the new context information to the ERTK. In case this
report contains data to be analysed, the Data Sorting component process it and sends it to the
corresponding Analysis Component.

Message topics: See following subsections.

Table 2: Context Components message topics definition

Parameter Description Value
text Indicates if the message contains text information [true, false]
image Indicates if the message contains one or more

images
[true, false]

video Indicates if the message contains one or more videos [true, false]
type Indicates which type of context change it contains See following subsections.

20

3.5.1. Outputs from Incident Aggregation

Anytime the context changes, the Incident Aggregation component publishes the new context.
This happens when a new report, partial report, follow-up or an analysed result, among others, is
received.

Message topic: context.<trigger>

Table 3: Incident Aggregation message topic definition

Parameter Description Value
Trigger Indicates what has changed in the context [newincident,

updatedincident]

The data transferred when a new incident has been added to the RESCUER context has the
format of an incident. In the case of an update, the data is wrapped with metadata in order to track
what has been updated (encapsulated inside “parameters” property) and why (defined in “type”
property). An incident is updated when one of its reports has been updated (“UP-REPORT”), a new
report is received (“NEW_REPORT”), the user in the ERTK moves reports between incidents
(“MOVE_REPORT”), or merges incidents (“MERGE”).

The following examples of message topics and data formats show the different use cases.
When a new incident arrives, a message topic with the trigger as “newincident” is used and the

message transferred follows the incident format.

Message topic: context.newincident

Data Format: {
{
 "timestamp": "2015-09-01T10:33:00.4147832-03:00",
 "updatedTimestampString": "2015-10-12T08:22:50.0000828+02:00",
 "reports": [...],
 "reportsMemory": [], /*it will be use when moving reports feature*/
 "keyword": "explosion",
 "position": {
 "latitude": 38.69951,
 "longitude": -9.18349
 },
 "reliability": "low",
 "incidentIdentifier": "1_dELdOijUA3F",
 "mergedIncidents": []
}

}

An update of an incident uses the message topic with the trigger “updatedincident” and the
format of the messages inside this queue follow the data formats shown below. The property “type”

21

is different depending on the case, e.g. the first one is an incident update after receiving an update
of a report. In this case, there is an identifier of the updated report inside “parameters”.

Message topic: context.updatedincident

Data Format: {
 "identifier": "5affc0a0-22fa-4f79-b2ee-9d13c0fe88e1",
 "timestamp":"2015-03-24T12:18:27.0804138+02:00",
 "type": " UP_REPORT",
 "data": { Incident },
 "parameters": [{ "reportIdentifier":" d8bvfc2fd-22fa"}]
/* updated report id */
}

The following example shows an incident update after receiving a new report. The “parameters”
property contains the identifier of the new report.

Data Format: {
 "identifier": "5affc0a0-22fa-4f79-b2ee-9d13c0fe88e1",
 "timestamp":"2015-03-24T12:18:27.0804138+02:00",
 "type": "NEW_REPORT",
 "data": { Incident },
 "parameters": [{ "reportIdentifier":" d8bvfc2fd-22fa"}]/* new report id */
}

The following example shows an incident update after the user of the ERTK merges two
incidents. The “parameters” property contains the identifier of the incident which holds the one
merged.

Data Format: {
 "identifier": "5affc0a0-22fa-4f79-b2ee-9d13c0fe88e1",
 "timestamp":"2015-03-24T12:18:27.0804138+02:00",
 "type": "MERGE",
 "data": [array<Incident>],
 "parameters": [{ "holderIdentifier":" d8bvfc2fd-22fa"}] /*incident holder
identifier*/
}

The following example shows an incident update after the user of the ERTK moves a report
between two incidents. The “parameters” property contains the identifier of the incident which held
the report and the identifier of the incident which has been moved to.

Data Format: {
 "identifier": "5affc0a0-22fa-4f79-b2ee-9d13c0fe88e1",
 "timestamp":"2015-03-24T12:18:27.0804138+02:00",
 "type": "MOVE_REPORT",
 "data": [array<Incident>],
 "parameters": [{ "sourceIncident":"d8vd-22fa"}, {"destinationIncident":"v2d6-
b5hw"}, {"movedReport":"oweb3-5rwl"}] /*[sourceIncident, destinationIncident]*/
}

22

3.5.2. Outputs from Data Sorting consumed by Data Analysis Solutions

The Context Components consume the Incident Reports which may contain text, images or
videos to be analysed. The system prioritizes the elements to be analysed depending on the context.
This processing is performed by the Data Sorting component. This component publishes the data to
be analysed under the following message topic, depending on which of the three analysis
components has to be sent to.

Message topic: analysisqueue.<text>.<image>.<video>

Data Format {
 "identifier": "5affc0a0-22fa-4f79-b2ee-9d13c0fe88e1",
 "timestamp":"2015-03-24T12:18:27.0804138+02:00"
 "data": Report
}

3.5.3. Outputs after a request of Context

The Context Module offers an API to access the central data of RESCUER to the other RESCUER
components. The request of this data is done through the Integration Platform as well as the
response.

Message topic: contextresponse.<requestIdentifier>

Table 4: Request Context message topic definition

Parameter Description
requestIdentifier It corresponds to the identifier of the request.

The format of the data, to response to a request context, is depicted below. The property “data”
depends on the request.

Data Format: {

 "identifier": "5affc0a0-22fa-4f79-b2ee-9d13c0fe88e1",
 "timestamp":"2015-03-24T12:18:27.0804138+02:00"
 "data": (dynamic: It can be a set of reports, an incident, a set of incidents,
set of pictures, set of videos, set of analysed elements)
 "status" : "SUCCESS"/"ERROR"/"NOTFOUND"/"TIMEOUT"
}

23

3.6. Information Flow from the Analysis Components

The components that analyse text, image, and video data will subscribe to “crowdmessage”
topics to get all raw data from the crowd. After the analysis, they will publish their results using an
equivalent topic pattern. The role of the original sender is just passed through the analysis
component, again to enable subscribers to filter or order based on the sender role. Table 5 defines
how data analysis data are sent from data analysis components.

Message topic: analysedresult.<text>.<image>.<video>.<role>

Table 5: Analysis message topic definition

Parameter Description Value
text Indicates if the message contains text information [true, false]
image Indicates if the message contains one or more

images
[true, false]

video Indicates if the message contains one or more videos [true, false]
role Indicates the role of sender [visitor, employee,

workforce]

The following examples show the data format for the output of each Analysis Component.

Analysis Result Content for Text

{
 "reportIdentifier": "5affc0a0-22fa-4f79-b2ee-9d13c0fe88e1",
 “originalText": "Please there is fire, a lot of fire everywhere and we need
help, we injuresfsd inw wz secseond flooor",
 "reportTimestamp": "2014-10-20T11:57:02.0804138+02:00",
 "information": [
 {
 "what": "medical assistance required",
 "who": "visitor",
 "where": "second floor",
 "observations": "observations of medical assistance message"
 },
 {
 "what": "fire",
 "who": "workforces",
 "where": "everywhere",
 "observations": "observations"
 }]
}

24

Analysis Result Content for Images

{
 "reportIdentifier": "5affc0a0-22fa-4f79-b2ee-9d13c0fe88e1",
 "location": {
 "latitude": 47.372438581730449,
 "longitude": 8.5469272998321717,
 "altitude": 0.0
 },
 "timestamp": "11:57:01",
 "reportTimestamp": "2014-10-20T11:57:01.6748164+02:00",
 "analysedElementIdentifier": "m3",
 "information": [
 {
 "what": "fire",
 "who": "workforce",
 "where": "",
 "reliability": 0.1,
 "observations": ""
 }]
}

Analysed Result Content for Video
{
 "reportIdentifier": "5affc0a0-22fa-4f79-b2ee-9d13c0fe88e1",
 "location": {
 "latitude": 47.3622089745065,
 "longitude": 8.5448428429742762,
 "altitude": 0.0
 },
 "timestamp": "2014-10-20T12:34:57.8339465+02:00",
 "measures": {
 "expanseVelocity": 1.08851767,
 "pedestrianM2": 10,
 "riskOfCongestion": true
 },
 "reportTimestamp": "2014-10-20T12:34:57.8339465+02:00",
 "analysedElementIdentifier": "m1",
 “information”: [
 {
 "what": "crowd",
 "who": "civilian",
 "where": "",
 "when": "00:05",
 "observations": ""
 }],
 "resolution" : "640x480",
 "quality" : 0.65
}

The Analysis Components need also the context to perform a smarter analysis. To request this
context, the following message topic and data format is used.

25

Message topic: “contextrequest”

Data Format
{
 "identifier": "5affc0a0-22fa-4f79-b2ee-9d13c0fe88e1",
 "timestamp":"2015-03-24T12:18:27.0804138+02:00"
 "type": "apiFunctionName"
 "parameters": [] /* function inputs */
}

3.7. Information Flow from the Command and Control Centre

ERTK communicates with MCS for the follow-up interaction and crowd steering, and with the
Context Components to get the required information about the emergency. The data published by
ERTK regarding follow-up interaction is detailed in section 3.8. The crowd steering communication
will be designed at the next iteration.

The communication between ERTK and the Context Components has not been completely
refined yet. There are two options: through the Integration Platform or directly by a REST API. The
two approaches will be tested and the best solution regarding performance will be selected. For the
first approach, a message topic must be transmitted through the RabbitMQ and it is the following:

Message topic: contextrequest

The data format, which does not depend on the type of communication, is the same as the one used
by the analysis component to request context information.

Data Format
{
 "identifier": "5affc0a0-22fa-4f79-b2ee-9d13c0fe88e1",
 "timestamp":"2015-03-24T12:18:27.0804138+02:00"
 "type": "apiFunctionName"
 "parameters": [] /* function inputs */
}

3.8. Information Flow for Follow-Up

Support to follow-up interaction involves the communication between ERTK and MCS. This
follow-up may start from an incident report or not. This means that the user in the command and
control centre can communicate directly with a mobile device, which has already sent a report, or
communicate to a target-group (e.g. workforces, supporting forces). Therefore, there is follow-up
and group-target follow-up.

In addition, the request of follow-up may be a chat message or a form message. The form
message specifies how should be the reply, e.g. giving “multichoice” options to reply. The chat

26

message belongs to a conversation, in which is not specified the type of the reply. It can be an
image, a video or plain text. Each follow-up answer can also be a chat message or a form message.

Both chat and form messages are sent with the same message topic. The receiver is who
interprets which type it is. However, the group-target follow up is filtered by different message
topics.

3.8.1. Follow-Up

Table 6 defines how a follow-up for an Incident Report is sent from the ERTK to MCS.

Message topic: ertkreportfollowup.<reportIdentifier>

Table 6: Follow up from a report message topic definition

Parameter Description Value
reportIdentifier Indicates to which report belongs this follow up string, e.g. “5affc0a0-

22fa-4f79-b2ee-
9d13c0fe88e1”

The message content for the follow-up, chat format as well as form format, is shown with
examples below. To achieve flexibility of the messages, a common structure is used for chat and
forms, using dynamic data. More information about this can be found it in D4.4.2 (Emergency
Response Toolkit 2).

Form follow-up request message content

{
 "requestIdentifier": "281f1fb7-5a6e-4b89-85a9-8fc22cf7b8c0",
 "reportIdentifier": "b988fb10-dc25-4061-bd76-e3172e0bbeef",
 "requestData": {
 "identifier": "24ff6169-c094-4fd7-a631-577f1a227330",
 "name": "How is the fire?",
 "type": "onechoice",
 "timestamp": "2015-04-22T17:25:33.0364338+02:00",
 "value": ["small", "medium", "large"]
 }
}

Chat follow-up request message content

{
 "requestIdentifier": "281f1fb7-5a6e-4b89-85a9-8fc22cf7b8c0",
 "reportIdentifier": "b988fb10-dc25-4061-bd76-e3172e0bbeef",
 "requestData": {
 "identifier": "24ff6169-c094-4fd7-a631-577f1a227330",
 "name": "chat",

27

 "type": "text",
 "timestamp": "2015-04-22T17:25:33.0364338+02:00",
 "value": "Can you provide more information?"
 }
}

When a user of the MCS receives a follow-up request from ERTK, the user may reply with
another chat message or filling the form received. This data is considered an update of the report;
therefore the ERTK does not need to subscribe to any special queue in order to get the replies.

3.8.2. Group-Target Follow-Up

In this use case, the ERTK user might be interested in asking a follow-up question to more than
one MCS user. Then this message is not related to any report but to a group-target.

This group-target can be defined depending on user profile, location, and activity. The role of the
user can be workforce, supporting force, or civilian. The location refers to a certain area inside the
emergency area. The activity means whether the user has already had any interaction with the
application (civilians who have not interacted with MCS to send a report should not be asked a
follow-up question). The user role filtering may be done by the routing key, but the filter by location
or by activity should be performed by the MCS itself.

Message topic: ertkgroupfollowup.<workforces>.<supporting>.<civilians>.<byLocation>.<byActivity>

In this case, the ERTK needs to subscribe to a queue in order to get the replies since they do not
come from a report. Each request message sent from the ERTK contains a request identifier to be
able to relate the reply with it. However, it should be tested, if the creation of large number of
queues for requests produces performance degradation. In this case, it should be used one single
queue for all the replies.

Message topic: “ertkgroupfollowup”.<requestIdentifier>

Table 7 defines how this target-group follow-up messages and replies are sent between ERTK
and MCS.

Table 7: Target-group follow up message topic definition

Parameter Description Value
requestIdentifier Unique identifier of the request made by the ERTK
Workforces Indicates if the message is to be sent to workforces [true, false]
Supporting Indicates if the message is to be sent to supporting

forces
[true, false]

Civilians Indicates if the message is to be sent to civilians [true, false]
byLocation Indicates if the MCS must filter by the location of the

user

byActivity Indicates if the MCS must filter by the activity of the
user

28

The data format for the group follow-up is shown in the following examples.

Group targeted follow-up request message content:

{
 "requestIdentifier": "281f1fb7-5a6e-4b89-85a9-8fc22cf7b8c0",
 "requestData": {
 "identifier": "24ff6169-c094-4fd7-a631-577f1a227330",
 "name": "How is the fire?",
 "type": "one choice",
 "timestamp": "2015-04-22T17:25:33.0364338+02:00",
 "value": ["small", "medium", "large"]
 },
 "geozone": [{
 "longitude": -38.3225811,
 "latitude": -12.672151999999997
 },{
 "longitude": -38.3194311,
 "latitude": -12.672052000000008
 },{
 "longitude": -38.3208811,
 "latitude": -12.673302000000007
 },{
 "longitude": -38.3219811,
 "latitude": -12.672652000000014
 }],
 "byActivity" : true

}

Group targeted follow-up reply message content:

{
 "requestIdentifier": "281f1fb7-5a6e-4b89-85a9-8fc22cf7b8c0",
 "reportIdentifier": "b988fb10-dc25-4061-bd76-e3172e0bbeef",
 "requestData": {
 "identifier": "24ff6169-c094-4fd7-a631-577f1a227330",
 "name": "reply",
 "type": "text",
 "timestamp": "2015-04-22T17:25:33.0364338+02:00",
 "value": "medium"
 }
}

29

4. Integration Platform Quality Requirements

4.1. Overview

The Integration Platform deals with the exchange of the messages between all components of
the RESCUER system. Therefore, some requirements should be in mind during its design. In case a
critical requirement is not addressed, this might result in a severe degradation of the system quality
or, in the worst case, a failure of the system. The critical requirements are scalability, data
persistence, performance, and security.

4.2. Scalability

The RESCUER system deals with crowd data. This means that the number of source of
information varies considerably, e.g. from 10.000 to 100.000 depending on the scenario. Thus, even
if in a certain scenario the system can run only in one machine, it should be able to scale in order to
adapt for bigger scenarios.

In terms of implementation, a simple solution with only one machine is currently held because it
is sufficient for the evaluations. However, a research has been performed to analyse how the
Integration Platform could scale. RabbitMQ has been chosen as the message broker, therefore a
research of RabbitMQ scalability has been conducted.

The scalability of RabbitMQ depends on whether the architecture to use the tool scales or not. A
way to scale is the clustering13. RabbitMQ works with nodes, each running the application and all
sharing queues, exchange, etc. This collection of nodes is considered a cluster. There is different type
of nodes. Some of them are I/O bounded because they write more often to disk. The queues lives in
a node and it can be configured to which node each queue belongs to and the storage capacity of
the node to ensure the message throughput.

All nodes are visible for the others. The cross-node publishing and consuming allows receiving a
message in one node, transferring it to another node, and delivering it by this latter one. This has a
performance penalty. Another issue to take into account refers the maximum size of a cluster, which
should not exceed 32 nodes. The larger the cluster is, the bigger the performance penalty.

RabbitMQ could run into an overloading of messages. In case there is a high throughput of
publishers and the consumers do not consume fast enough, the node may not be able to deal with
all messages and it crashes. The system in such a case applies flow control of connections, where the
system exerts “TCP back-pressure“ on the connections14 protecting itself.

13 https://www.rabbitmq.com/clustering.html
14 http://bigwig.io/docs/message_throughput/

30

4.3. Data Persistence

RabbitMQ takes care of failure by replicating data to be able to recover it if necessary, which is
really important when dealing with high reliability system, which is the case of the RESCUER System.

The queues can be defined as “durable”. The durability property ensures that this queue
survives reboot. In addition, if the messages stored in this queue have the delivery mode set as
“persistent”, they are also recovered after a reboot. Messages are written to disk before they are
dequeued. These mechanisms allow the Integration Platform to satisfy the requirement of data
persistence.

However, message persistence implies a 50 to 70% performance penalty

4.4. Performance

Few issues affecting performance have already been pointed in the previous sections. One of
them is the TCP back-pressure to not run out of memory; it is a flow control that slows down the
message rate of the publishers. Another one is the message persistence, which implies a 50 to 70%
performance penalty, but it must be paid because of the nature of the application.

There are more issues that influence performance. However, going deeper into RabbitMQ
technology is not part of our scope. There are tests performed15 with different configurations and
message sizes.

In our system the critical communication is the one coming from the crowd because it is an
unknown number of consumers and publishers. Since scalability is possible, in case this data traffic
and amount of connections overtake the Integration Platform, dedicated machines for this
communication can be set. This would avoid performance issues because of the number of the users
from the crowd.

A message coming from MCS is maximal 6KB. The crowd publishes more than consumes,
therefore the nodes bound to their queues have to be aware of storage capacity.

Furthermore, there is a parameter called “prefetch”. This is the number of message that
RabbitMQ delivers per time. It does not send more messages until the sent messages are
acknowledged. Thus it is a parameter to be tuned to optimize performance. If it is too low, it
degrades performance because the client may be waiting for another message while there are
available messages, but too big may cause problems to the client. This parameter has not yet been
configured for the RESCUER system. Currently is preconfigured to one, which ensures the correct
functionality even though is not the optimized parameter. When the new architecture is defined,
this parameter will be tested with different message loads.

15 https://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-part-2/

31

4.5. Security

A problem that may also be faced is security, the tolerance to hacks. For example, another
system could bind to a queue in the system and get the messages from the crowd. RabbitMQ system
offers the “Exclusive” configuration of the queues. Since the consuming queues of the crowd data
are known, these queues can be exclusive. This means that only one known consumers may
consume messages.

Task 3.4 (Data Usage Control) deals with the elicitation of security requirements for the RESCUER
system and with the specification of more methods to satisfy those requirements.

32

5. Roadmap for Future Work

A concept planned to be investigated in the last iteration is task queues which dispatch
messages to several subscribers of the same message topics using a round robin approach16. This
simplifies the design of very scalable distributed systems.

Furthermore, performance tests have to be performed for the Integration Platform as a
component (to be reported in D.1.5.3 (Integrated Platform Demonstrator 3)) and for the system as a
whole, which is one of the goals of the evaluations to be reported in D5.4.1 (Evaluation Report of the
Integrated Solution 1) and later on in D5.4.2 (Evaluation Report of the Integrated Solution 2).

The last iteration of this deliverable will focus on defining the communication flow and
characteristics of the group-targeted crowd steering and communication of the emergency situation
to the public. In addition, it should also validate whether the definitions made in the second iteration
are valid or they have to be readjusted.

16 https://www.rabbitmq.com/tutorials/tutorial-two-python.html

33

6. Conclusion

The integration middleware has been implemented as an event-driven architecture using
RabbitMQ because of its hub-and-spoke topology and the AMQP standard protocol. The type of
exchange chosen for the RESCUER system is ‘topic’ since this allows us to easily define message
flows using the routing key structure that was shown in this deliverable.

The current state of the middleware broker takes into account the information flow from the
Mobile Crowdsourcing Solution to ERTK to send Incident Reports and Notifications, the follow-up
interaction involving ERTK and the Mobile Crowdsourcing Solution, the output from the Data
Analysis Components that go to the Context Components.

The different types of follow-up interaction are taken into account to optimize it as much as
possible in terms of performance.

34

Glossary
Terms

Command and Control Centre Group of people and tools assigned to evaluate risks and make
decisions in an emergency and/or crisis in an industrial area or at a large-scale event, usually at the
same physical place.
Communication Infrastructure Component of the RESCUER platform whose goal is to support the
information flow between the crowd and the command centre.
Data Analysis Solutions Component of the RESCUER platform whose goals are 1) fusing similar data
coming from different eyewitnesses, 2) analysing photos, videos, and text messages in order to
extract information such as the type of incident, the position and dimensions of the affected area,
people density, surrounding sources of further danger, evacuation routes, and possible approach
routes for the formal responders.
Emergency Critical situations caused by incidents, natural or man-made, that require measures to be
taken immediately to reduce their adverse consequences to life and property.
Emergency Response Toolkit Component of the RESCUER platform whose goals are to: 1) get
contextual information about the emergency, 2) ask eyewitnesses and formal responders for
relevant missing information, 3) give instructions to eyewitnesses, first responders and potentially
affected people or companies, and 4) communicate the emergency to the media, public authorities,
and the general public in a context-aware way. The emergency response toolkit is meant to be used
primarily by the command and control centre staff.
Mobile Crowdsourcing Solution Component of the RESCUER platform whose goal is to support
eyewitnesses and formal responders in providing the command and control centre with information
about an emergency situation, taking into account the different smartphones that might be used
and how people interact with smartphones under stress.

Abbreviations

EC European Commission

RESCUER Reliable and Smart Crowdsourcing Solution for Emergency and Crisis Management

MCS Mobile Crowdsourcing Solution

ERTK Emergency Response Toolkit

Appendix A

Questionnaire: Information needs and
offers of RESCUER partners

Information Needs

1. Which information do you need?
2. Can you give a detailed explanation about this information?
3. What will you use this information for?
4. Do you know who provides this information?

No. Information Need Detailed Description What do you need it for? Who offers it?

N1 People Coordinates The available coordinates from the mobile app
running with a latency of 5s.

To analyse it and obtain the crowd
density data.

Mobile Application

N2

Information Offers

5. Which information do you offer?
6. Do you know who needs this information?

No. Information Offer Detailed Description Who may need it?

O1 Crowd Density Data JSON data describing the density of people vs
coordinates.

Emergency Response Toolkit to show it in the map.

O2

Name of partner:
Component(s) to develop:
Programming Language(s):
Platforms (Hardware, Operating System):

36

Appendix B

Questionnaire: Information needs and
offers of RESCUER partners

Information Needs

1. Which information do you need?
2. Can you give a detailed explanation about this information?
3. What will you use this information for?
4. Do you know who provides this information?

No. Information Need Detailed Description What do you need it for? Who offers it?

Name of partner: Fraunhofer, DFKI, MTM
Component(s) to develop: RESCUER Mobile Solution
Programming Language(s): PhoneGap: JavaScript, HTML5, and CSS3
Platforms (Hardware, Operating System): Android, iOS

37

Information Offers

5. Which information do you offer?
6. Do you know who needs this information?

No. Information Offer Detailed Description Who may need it?

O1.1 Crowd Density Data JSON data describing the density of people vs
coordinates.

Emergency Response Toolkit to show it in the map.

O1.2 Incident local Where is the incident? Emergency Response Toolkit to show it in the map.

O1.3
Incident perimeter

Definition of incident perimeters i.e. critical zone,
isolation zone,…

Emergency Response Toolkit to show it in the map.

O1.4 Incident type What it happened? Emergency Response Toolkit to show it in a summary board.

O1.5 Incident time When it happened? Emergency Response Toolkit to show it in a summary board.

O1.6 Affected people Who is affected? Emergency Response Toolkit to show it in a summary board.

O1.7
User profile

who is using the app and consequently providing the
information

Emergency Response Toolkit to calculate reliability.

O1.8 Potential hazardous
materials

Dangerous materials stored in the incident area.
Emergency Response Toolkit to show it in the map.

O1.9 Integrity of physical
infrastructures

Description of damages in buildings, roads… and their
identification

Emergency Response Toolkit to show it in a summary board.

O1.10 Traffic Information The current usage of the road infrastructure. Emergency Response Toolkit to show it in the map.

38

No. Information Offer Detailed Description Who may need it?

O1.11 People movement
dynamic

Movement patterns of people in the incident area
and neighbourhood

Emergency Response Toolkit to show it in the map.

O1.12 Conducted protective
actions Protective action that have been taken

Emergency Response Toolkit to show it in the map and in a summary
board (?).

O1.13 Public safety and
security status

Occurrence of violent actions, e.g. robberies,
plunder, aggressions

Emergency Response Toolkit to show it in the map and in a summary
board (?).

O1.14
Incoming and
understanding of
messages

Confirmation that instruction were read and
understood, especially in the case of instructions for
the operational forces in venue or specialists working
on the response against HAZMATs

Emergency Response Toolkit to show it in a summary board.

O1.15
Human resources

Information about the usage of human resources for
the emergency situation.

Emergency Response Toolkit to show it in a summary board.

O1.16
Equipment

Information about the usage of equipment for the
emergency situation.

Emergency Response Toolkit to show it in a summary board.

O1.17
Images/Videos + Meta
Data

Images and videos of the incident. This should
support to extract anyway the information need
described above.

Image/Video Analysis Component.

We are refining this information need in the data model shown in Figure “Data model for the RESCUER app” of deliverable D2.2.1.

39

Questionnaire: Information needs and
offers of RESCUER partners

Information Needs

1. Which information do you need?
2. Can you give a detailed explanation about this information?
3. What will you use this information for?
4. Do you know who provides this information?

No. Information Need Detailed Description What do you need it for? Who offers it?

N2.1 (Raw) Text The textual description of the incident sent by
people with the mobile application OR textual
description sent with images and videos

To analyse it and obtain semantic
annotations for the Emergency Response
Toolkit

Mobile Crowdsourcing
Solution (Dispatcher
component)

Information Offers

5. Which information do you offer?
6. Do you know who needs this information?

No. Information Offer Detailed Description Who may need it?

O2.1 Semantic text
annotations about
incident

(Probably JSON) data structure containing the original
text and the semantic annotations covering at least
type of incident (what), additional location
descriptions (where), and information about affected
people (who)

Emergency Response Toolkit

Name of partner: DFKI (Andreas Poxrucker)
Component(s) to develop: Text Analysis Module
Programming Language(s): Java
Platforms (Hardware, Operating System):

40

Questionnaire: Information needs and
offers of RESCUER partners

Information Needs

1. Which information do you need?
2. Can you give a detailed explanation about this information?
3. What will you use this information for?
4. Do you know who provides this information?

No. Information Need Detailed Description What do you need it for? Who offers it?

N3.1 Image and video with
structured data (e.g.
geographic location, time,
image and video resolution)
that presents fire, smoke
and/or explosion.

We will use only the images/videos that
present minimum digital quality so that we
can process it analytically (Filtering Step)
and return the data with annotation of
crisis situations and extracted features
generated in the analysis module.

We will classify, cluster, match and
perform similarity querying with the data
to identify crises, and to spot regions of
interest that indicate fire, smoke, and/or
explosion.

These data must come from
T3.1 leaded by UPM.

Information Offers

5. Which information do you offer?
6. Do you know who needs this information?

No. Information Offer Detailed Description Who may need it?

O3.1 We offer sets of images/videos geo
referred and time contextualized
that have the potential of assisting
the Command Centre in
monitoring the crises.

The images/videos shall be tagged (what, who, where)
indicating crisis situations along with details about the fire,
smoke, and/or explosion that started the crisis.

Emergency Response Toolkit

Name of partner: USP (University of Sao Paulo)
Component(s) to develop: T3.2, modules that form the data analysis
system
Programming Language(s): C++/Java
Platforms (Hardware, Operating System): X86 PCs and X86 high-end
servers; Windows

41

Questionnaire: Information needs and
offers of RESCUER partners

Information Needs

1. Which information do you need?
2. Can you give a detailed explanation about this information?
3. What will you use this information for?
4. Do you know who provides this information?

No. Information Need Detailed Description What do you need it for? Who offers it?

N4.1 Location All data received should be geo-located. To cluster data based on its location
and then filter them.

Mobile Application

N4.2 Video sequences Video sequences recorded by end-users, whose
duration is more than 15 seconds.

To analyse them and extract as much
information about the crowd as
possible in the Video Analysis
Component.

Mobile Application

N4.3 Frame stamps Timestamps of each frame that compose the video
sequence.
Alternatively, we could work with the timestamp of the
beginning of the recording and the frame rate to obtain
a temporal reference for each frame.

To analyse the quantity of motion in
the scene for the Video Filtering
Component.

Mobile Application

N4.4 Orientation
measurements

Orientation measurements during the video recording
with the objective to associate the orientation of the
mobile to each frame of the video.

To analyse the quantity of motion in
the scene for the Video Filtering
Component.

Mobile Application

Name of partner: UPM
Component(s) to develop: Video Fusion & Filtering Components, Video
Analysis Component
Programming Language(s): C++
Platforms (Hardware, Operating System):

• Two computers for parallelize processes at least.
o Minimum requirements: Intel Core i7, 2.8 GHz, 4GB

RAM (using now).
• OS: Linux.

42

No. Information Need Detailed Description What do you need it for? Who offers it?

N4.5 Orientation
timestamps

Timestamps of each orientation sample. To synchronize the temporal
references of the frames with the
orientation samples in the Video
Filtering Component.

Mobile Application

N4.6 Acceleration
measurements

Acceleration measurements during the video recording
with the objective to associate the acceleration of the
mobile to each frame of the video.

To analyse the quantity of motion in
the scene for the Video Filtering
Component.

Mobile Application

N4.7 Acceleration
timestamps

Timestamps of each acceleration sample. To synchronize the temporal
references of the frames with the
acceleration samples in the Video
Filtering Component.

Mobile Application

Information Offers

5. Which information do you offer?
6. Do you know who needs this information?

No. Information Offer Detailed Description Who may need it?

O4.1 Location All data provided by the Video Analysis Component will
be geo-located.

Emergency Response Toolkit to show it in the map.

O4.2 Kind of event Kind of event that is contained in the video-sequence:
• Smoke
• Fire
• Crowd
• Combination.

Emergency Response Toolkit to show it in the map.

O4.3 People by m2 Estimation of the people/m2 presents in the video
sequence.

Emergency Response Toolkit to show it in the map.

43

No. Information Offer Detailed Description Who may need it?

O4.4 Risk of congestion Risk of congestion alarm based on the density temporal
analysis that the Video Analysis Component realises.

Emergency Response Toolkit to show it in the map.

O4.5 Expanse velocity Crowd/Fire/Smoke expanse velocity based on the
density temporal analysis that the Video Analysis
Component realises.

Emergency Response Toolkit to show it in the map.

44

Questionnaire: Information needs and
offers of RESCUER partners

Information Needs

1. Which information do you need?
2. Can you give a detailed explanation about this information?
3. What will you use this information for?
4. Do you know who provides this information?

No. Information Need Detailed Description What do you need it for? Who offers it?

N5.1 People Coordinates The available coordinates from the
mobile app uploaded once a minute.

To analyse it and obtain the crowd density
data.

Sensing Library (built into the mobile
application)

N5.2 User ID The unique ID of each app user. To be able to assign uploaded data to an
anonymous entity and to filter crowd data.

Sensing Library (built into the mobile
application)

N5.3 Messages (*) Messages to be received by the mobile
app.

To present the mobile app users with
messages from the command and control
centre.

Later on: the message queue (which
will be fed by the Emergency
Response Toolkit)
Right now: DFKI message server (fed
by a DFKI Web UI)

N5.4 Outgoing Text Data
(**)

Everything text based that the app is
sending to the command and control
centre.

Since the DFKI Library is responsible for
enabling the Ad-hoc mode, it will need to
route all outgoing text data to make sure
that it will be sent out via Ad-hoc during
scenarios where the network is down.

Mobile application (after the mobile
application created all messages for all
analysis components, the message
should be handed to the DFKI library,
which sends it out).

Name of partner: DFKI
Component(s) to develop: DFKI Library / Crowd Density Server
Programming Language(s): DFKI Library: Objective-C/Java, Server:
Python
Platforms (Hardware, Operating System): Server Cluster running Linux
(Debian Wheezy AMD 64)

45

*: receiving messages is being handled through the DFKI Library since we are also responsible for switching between normal mode and AdHoc mode which
directly affects the way messages are received.

**: due to size limitations, the AdHoc mode won’t be able to send out binary data. Hence, the DFKI library will only route text data.

Information Offers

5. Which information do you offer?
6. Do you know who needs this information?

No. Information Offer Detailed Description Who may need it?

O5.1 Crowd Density Data JSON data describing the density of people vs
coordinates.

Emergency Response Toolkit to show it in the map.

O5.2 Textual Data Messages and other text-based information (like
reports) from the mobile app.

Emergency Response Toolkit

Appendix C

Data Format for Crowd Density

{
 "max": 7,
 "stats": {
 "active_users": 1788,
 "ts": 1373047440,
 "max_timestamp": 1373241360.0
 },
 "data": [
 {
 "lat": 47.37340013035328,
 "count": 1,
 "lng": 8.542822217576711
 },
 {
 "lat": 47.36695102421234,
 "count": 1,
 "lng": 8.543362421557969
 },
 {
 "lat": 47.36456543677241,
 "count": 1,
 "lng": 8.53699210100671
 },
 {
 "lat": 47.36904095397086,
 "count": 1,
 "lng": 8.543561752893536
 }
]

	1. Introduction
	1.1. Purpose
	1.2. Change Log
	1.3. Partners’ Roles and Contributions
	1.4. Document Overview

	2. System Integration Approach
	2.1. Functional Decomposition and Integration Platform Approaches
	2.2. Building a Central Integration Platform
	2.3. Excursus: Rabbit MQ
	2.4. Configuration and Persistence in the Integration Middleware

	3. Prototype of the Integrated Platform Demonstrator
	3.1. Overview
	3.2. Definitions and Infrastructure
	3.3. Information Flow
	3.4. Information Flow from the Crowd
	3.5. Information Flow from the Context Components
	3.5.1. Outputs from Incident Aggregation
	3.5.2. Outputs from Data Sorting consumed by Data Analysis Solutions
	3.5.3. Outputs after a request of Context

	3.6. Information Flow from the Analysis Components
	3.7. Information Flow from the Command and Control Centre
	3.8. Information Flow for Follow-Up
	3.8.1. Follow-Up
	3.8.2. Group-Target Follow-Up

	4. Integration Platform Quality Requirements
	4.1. Overview
	4.2. Scalability
	4.3. Data Persistence
	4.4. Performance
	4.5. Security

	5. Roadmap for Future Work
	6. Conclusion
	Glossary
	Appendix A
	Appendix B
	Appendix C

