
!

!

Version 1.0

Copyright © 2018

ESP32 Bluetooth
Architecture

About This Guide
This document introduces the ESP32 Bluetooth architecture.

Release Notes

Documentation Change Notification
Espressif provides email notifications to keep customers updated on changes to
technical documentation. Please subscribe here.

Date Version Release notes

2018.1 V1.0 First release.

http://espressif.com/en/subscribe

Content
1. Bluetooth 1 ..

1.1. Overview	 1
..
1.1.1. Bluetooth Application Structure	 1
...
1.1.2. Selection of the HCI Interfaces 	 2
..
1.1.3. Bluetooth Operating Environment 	 4
...

1.2. Architecture	 4
..
1.2.1. Controller	 4
..
1.2.2. BLUEDROID	 4
...

1.2.2.1. Overall Architecture	 4
...
1.2.2.2. OS-related Adaptation	 6
..

1.2.3. Bluetooth Directory Introduction	 6
..

2. Classic Bluetooth 9 ...
2.1. Overview	 9
..

2.1.1. L2CAP	 10
...
2.1.2. SDP	 10
...
2.1.3. GAP	 10
...
2.1.4. A2DP and AVRCP	 11
...

3. Bluetooth Low Energy 14 ...
3.1. GAP	 14
..

3.1.1. Overview	 14
...
3.1.2. Status Transitions among GAP Roles	 15
...
3.1.3. BLE Broadcast Procedure	 16
..

3.1.3.1. Broadcast using a public address	 16
..
3.1.3.2. Broadcast using a resolvable address	 17
...
3.1.3.3. Broadcast using a static random address	 18
...

3.1.4. BLE Modes	 19
...
3.1.4.1. Connectable Scannable Undirected Mode	 19
..
3.1.4.2. High Duty Cycle Directed Mode and Connectable Low Duty Cycle Directed

Mode	 19
...

3.1.4.3. Scannable Undirected Mode	 19
...
3.1.4.4. Non-connectable Undirected Mode	 20
..

3.1.5. BLE Broadcast Filtering Policy	 20
...
3.1.6. BLE Scanning Procedure	 20
..

3.1.7. BLE GAP Implementation Mechanism	 21
...
3.2. GATT	 21
..

3.2.1. ATT	 21
..
3.2.2. GATT Profile	 23
..
3.2.3. Add Gatt Services in ESP32 IDF Environment	 25
...
3.2.4. Discover a Peer Device’s Services in ESP32 IDF (GATT Client)	 26
.................................

3.3. SMP	 27
...
3.3.1. Overview	 27
...
3.3.2. Safety Management Controller	 28
...

3.3.2.1.BLE Encryption	 28
..
3.3.2.2.BLE Bonding	 30
..

3.3.3. The Implementation of SMP	 30...

!

1. Bluetooth

1. Bluetooth
This chapter describes the basic Bluetooth architecture of ESP32.

1.1. Overview
1.1.1. Bluetooth Application Structure

Bluetooth is a wireless technology standard for exchanging data over short distances, with
advantages including robustness, low power consumption and low cost. The Bluetooth
system can be divided into two different categories: Classic Bluetooth and Bluetooth Low
Energy (BLE). ESP32 supports dual-mode Bluetooth, meaning that both Classic Bluetooth
and BLE are supported by ESP32.

Basically, the Bluetooth protocol stack is split into two parts: a “controller stack” and a
“host stack”. The controller stack contains the PHY, Baseband, Link Controller, Link
Manager, Device Manager, HCI and other modules, and is used for the hardware interface
management and link management. The host stack contains L2CAP, SMP, SDP, ATT, GATT,
GAP and various profiles, and functions as an interface to the application layer, thus
facilitating the application layer to access the Bluetooth system. The Bluetooth Host can be
implemented on the same device as the Controller, or on different devices. Both
approaches are supported by ESP32. Figure 1-1 describes some typical application
structures:

!
Figure 1-1.The architecture of Bluetooth host and controller in ESP-IDP

• Scenario 1 (Default ESP-IDF setting): BLUEDROID is selected as the Bluetooth Host,
and VHCI (software-implemented virtual HCI interface) is used for the communication
between Bluetooth Host and Controller. In this scenario, both the BLUEDROID and

ESP32

Bluedroid

Bluetooth
Controller

PC�3KRQH�3DG

Linux/Android

PC

Test Tool(BQB)

VH
C

I

UART

UART/SDIO

Espressif ! /421 2018.1

!

1. Bluetooth

the Controller are implemented on the same device (i.e. the ESP32 chip), eliminating
the need for an extra PC or other host devices running the Bluetooth Host.

• Scenario 2: the ESP32 system is used only as a Bluetooth Controller, and an extra
device running the Bluetooth Host is required (such as a Linux PC running BlueZ or
an Android device running BLUEDROID, etc). In this scenario, Controller and Host are
implemented on different devices, which is quite similar to the case of mobile phones,
PADs or PCs.

• Scenario 3: This scenario is similar to Scenario 2. The difference lies in that, in the
BQB controller test (or other certifications), ESP32 can be tested by connecting it to
the test tools, with the UART being enabled as the IO interface.

1.1.2. Selection of the HCI Interfaces

In the ESP32 system, only one IO interface at a time can be used by HCI, meaning that if
UART is enabled, other interfaces such as the VHCI and SDIO are disabled. In the ESP-IDF
(V2.1 and later versions), you can configure the Bluetooth HCI IO interface as VHCI or
UART in the menuconfig screen, as shown below:

!
Figure 1-2.Configuration of the HCI IO interface

When the Bluedroid Bluetooth stack enabled option is selected , VHCI is enabled as the
IO interface and the HCI use UART as IO (NEW) option will disappear from the menu.
When the HCI use UART as IO (NEW) option is selected, UART is enabled as the IO
interface. Currently, other IOs are not supported in ESP-IDF. If you want to use other IOs,
such as the SPI, a SPI-VHCI bridge is required.

Option 1:

When the Bluedroid Bluetooth stack enabled option is selected, the following screen is
displayed:

Espressif ! /422 2018.1

!

1. Bluetooth

!
Figure 1-3.VHCI configuration

Here, users can configure the following items:

• Bluetooth event (callback to application) task stack size: sets the size of the BTC
Task);

• Bluedroid memory debug: debugs the BLUEDROID memory;

• Classic Bluetooth: enables the Classic Bluetooth;

• Release DRAM from Classic BT Controller: releases the DRAM from the Classic
Bluetooth Controller;

• Include GATT server module (GATTS): includes the GATTS module;

• Include GATT client module (GATTC): includes the GATTC module;

• Include BLE security module (SMP): includes the SMP module;

• Close the bluedroid bt stack log print: closes the BLUEDROID printing;

• BT/BLE MAX ACL CONNECTIONS (1~7): sets the maximum number of ACL
connections.

Option 2:

When the HCI use UART as IO option is selected, the following screen is displayed:

!
Figure 1-4.UART configuration

Users can configure the "UART Number for HCI (NEW)" (UART port number) and the
"UART Baudrate for HCI (NEW)" (the baud rate of UART) here. It should also be
mentioned here that CTS/RTS must be supported, in order to enable the UART as the HCI
IO interface.

Espressif ! /423 2018.1

!

1. Bluetooth

1.1.3. Bluetooth Operating Environment

The default operating environment of ESP-IDF is dual-core FreeRTOS. ESP32 Bluetooth
can assign function-based tasks with different priorities. The tasks with the highest priority
are the ones running the Controller. The Controller tasks, which have higher requirements of
real time, have the highest priority in the FreeRTOS system except for the IPC tasks, which
are mainly for the interprocess communication between the dual-core CPUs. BLUEDROID
(the default ESP-IDF Bluetooth Host) contains four tasks in total, which run the BTC, BTU,
HCI UPWARD, and HCI DOWNWARD.

1.2. Architecture
1.2.1. Controller

The Bluetooth Controller of ESP32 supports both the Classic BT and BLE (V4.2). The
Controller has integrated a variety of functions, including H4 protocol, HCI, Link Manager,
Link Controller, Device Manager, and HW Interface. These functions are provided to the
developers in the form of libraries, while some APIs that can access the Controller are also
provided. For details, see readthedocs.

!
Figure 1-5. Architecture of the Classic BT & BLE controller (from the SIG BT CORE 4.2)

1.2.2. BLUEDROID

1.2.2.1. Overall Architecture
In ESP-IDF, the significantly modified BLUEDROID is used as the Bluetooth Host (Classic
BT + BLE). The BLUEDROID, which has a complete set of functions and supports most of
the commonly-used standards and architectural designs, is relatively complicated.
However, the modified BLUEDROID retains most of the codes below the BTA layer and

Espressif ! /424 2018.1

http://esp-idf.readthedocs.io/en/latest/api-reference/bluetooth/esp_gap_ble.html

!

1. Bluetooth

almost completely deletes the BTIF layer code, using a leaner BTC layer as the built-in
specification and Misc control layer. The architecture of the modified BLUEDROID and its
relationship with the Controller are shown in the figure below:

!
Figure 1-6.ESP32 BLUEDROID diagram

As shown in the figure above, the BLUEDROID can be divided into two layers mainly, which
are the BTU layer and the BTC layer (except for HCI). Each layer is responsible for its
corresponding tasks. More specifically, the BTU layer is mainly responsible for processing
the bottom layer protocol stacks of the Bluetooth Host, including L2CAP, GATT/ATT, SMP,

ESP_API BLE
PROFILES

SDPGAPGATT BT
PROFILES

BTA_API BT
PROFILESSDPGAPGAP

BTC
TASK

USER
TASK

BTU
TASK

BLE PROFILE
ҁ*$77�%DVHG҂

BAT
TER

Y

BLE
HID

SPP
LIK
E

BLU
FI

…
…

USER APP
PROCEDURE

BT PROFILE

A2D
P SPP …

…

VHCI_API VHCI

BT LOW-LAYER
PROFILE

A2DP RFCOMM ……

BLE & BT
STACK

L2ACAP SDP SMPGATT/ATT GAP

H4 HCI TRANSPORT LAYER (Include HCI Task)

Espressif Bluedroid
Coarse Architecture

V1.1

Contr
oller

TASK

Controller

H4
HCI

LM/LC

HW Interface

BLE
PROFILES

BLE PROFILE

6
Low
Pan

L2C
AP
D-

Chan

…
…

BLE LOW-LAYER
PROFILE

6LowPan
L2CAP

Dynamic
CHANNEL

……

📖 Note:

This diagram mainly describes the hierarchy of the BLUEDROID BLUEDRIOD, rather than details, such as
the HCI TASK. The detailed information about each layer can be seen below.

Espressif ! /425 2018.1

!

1. Bluetooth

GAP, and other profiles. The BTU layer provides an interface prefixed with "bta". The BTC
layer is mainly responsible for providing a supported interface, prefixed with “esp”, to the
application layer, processing GATT-based profiles and handling miscellaneous tasks. All the
APIs are located in the ESP_API layer. Developers should use the Bluetooth APIs prefixed
with “esp".

The figure above does not describe the HCI layer in detail. In fact, the HCI layer has two
tasks which process the Downward and Upward data (in the designs of ESP-IDF V2.1 and
older versions).

The design logic behind this architecture is to minimize the load on the User Tasks and
streamline the Bluetooth structure by handing over the Bluetooth-related tasks to the BTC
layer.

Due to legacy reasons and actual demand, some of the Classic Bluetooth profiles, such as
RFCOMM and A2DP, as well as other lower layer protocols are implemented in the BTU
layer, while some of the protocols that are related to procedural controls, or require the
ESP-API, are implemented in the BTC layer.

Some of the profiles and lower layer functions of the Bluetooth Low Energy, such as the
6LowPan or Dynamic L2CAP Channel, will be implemented in the BTU layer, thus providing
the application layer with the ESP-API through the BTC.

1.2.2.2. OS-related Adaptation
Some interfaces that are related with the system in BLUEDROID require OSI adaptation.
The functions involved include Timer	(Alarm), Task	(Thread), Future	Await/Ready	
(Semphore), and Allocator/GKI	(malloc/free).

The FreeRTOS Timer in BLUEDROID has been packaged as an Alarm, and is used to start
the timer which triggers certain tasks.

In BLUEDROID, the POSIX Thread has been replaced with the FreeRTOS tasks, and uses
the FreeRTOS Queue to trigger tasks (i.e. wake up).

In BLUEDROID, the Future	Await/Ready function is used to achieve Blocking. Future Lock
packages the xSemphoreTake of FreeRTOS as the future_await function, and packages
the xSemphoreGive as the future_ready function. It is worth noting that the future_await
and future_ready functions cannot be called in the same task context.

In BLUEDROID, malloc/free in the standard library is packaged as the Allocator function
that reserves (mallocs) or frees memory. Besides, the GKI function also uses malloc/free
as the core function of GKI_getbuf/GKI_freebuf.

1.2.3. Bluetooth Directory Introduction

In the component/bt screen of the ESP-IDF, you can see the following sub-folders and
sub-files:

Espressif ! /426 2018.1

!

1. Bluetooth

!
Figure 1-7. Component/bt in ESP-IDF

The detailed description of each sub-folder and sub-file can be found in the table below:

Table 1-1. Description of component/bt in ESP-IDF

Dictionary Description Remarks

├── Kconfig Menuconfig files –

├── bluedroid BLUEDROID home entry –

│ ├── api The API directory, which includes all the APIs (except
for those that are related to the Controller) –

│ ├── bta
The Bluetooth adaptation layer, which is suitable for
the interface of some bottom layer protocols in the
host.

–

│ ├── btc
The Bluetooth control layer, which controls the upper-
layer protocols (including profiles) and miscellaneous
items in the host.

–

│ ├── btcore
Some of the original feature/bdaddr conversion
functions

To be
abandoned

│ ├── btif Some call	out functions used by the BTA layer To be
abandoned

│ ├── device Related to the device control of the Controller, e.g. the
basic set of HCI CMD controller processes –

Dictionary

Espressif ! /427 2018.1

!

1. Bluetooth

│ ├── external
Codes that are not directly related to the Bluetooth,
but are still usable, e.g. the SBC codec software
programs

–

│ ├── gki The management codes that are commonly used by
the BLUEDROID memory, e.g. the buffer and queue. –

│ ├── hci HCI layer protocols –

│ ├── include The top-layer BLUEDROID directory –

│ ├── main Main program (mainly to start or halt the process) –

│ ├── osi OS interfaces (including semaphore/timer/thread, etc.) –

│ ├── stack The bottom layer protocol stacks in the Host (GAP/
ATT/GATT/SDP/SMP, etc.) –

│ └── utils Practical utilities –

├── bt.c Controller-related processing files –

├── component.mk makefile –

├── include Controller-related header file directory –

│ └── bt.h Header files that contain the controller-related APIs –

└── lib Controller library directory –

 ├── LICENSE License –

 ├── README.rst Readme files –

 └── libbtdm_app.a Controller library –

Description RemarksDictionary

Espressif ! /428 2018.1

!

2. Classic Bluetooth

2. Classic Bluetooth
This chapter introduces the Classic Bluetooth in ESP-IDF.

2.1. Overview
The Bluetooth Host Stack in ESP-IDF originates from BLUEDROID and has been adapted
to embedded applications. At the lower layer, the Bluetooth Host Stack communicates with
the Bluetooth dual-mode Controller via the virtual HCI interface. At the upper layer, the
Bluetooth Host stack provides the profiles and APIs for stack management to the user
applications.

Protocols define the message formats and the procedures aimed to accomplish specific
functions, e.g. data transportation, link control, security service and service information
exchange. Bluetooth profiles, on the other hand, define the functions and features required
of each layer in the Bluetooth system, from PHY to L2CAP, and any other protocols outside
the core specification.

Below are the Classic BT profiles and protocols currently supported in the Host Stack.

• Profiles: GAP, A2DP(SNK), AVRCP(CT)

• Protocols: L2CAP, SDP, AVDTP, AVCTP

The protocol model is depicted in Figure 2-1.

!
Figure 2-1. Profile Dependencies

Espressif ! /429 2018.1

!

2. Classic Bluetooth

In Figure 2-1, L2CAP and SDP are necessary in a minimal Host Stack for Classic Bluetooth.
AVDTP, AV/C and AVCTP are outside the core specification and are used by specific
profiles.

2.1.1. L2CAP

As an OSI layer 2 Bluetooth protocol, the Bluetooth Logical Link Control and Adaptation
Protocol (L2CAP) supports higher level protocol multiplexing, packet segmentation and
reassembly, as well as the delivery of service information quality. L2CAP makes it possible
for different applications to share an ACL-U logical link. Applications and service protocols
interface with L2CAP, using a channel-oriented interface, to create connections to
equivalent entities on other devices.

L2CAP channels may operate in one of the six modes selected through the L2CAP channel
configuration procedure. The operation modes are distinguished from the QoS that they
can provide, and are utilized in different application conditions. These modes are:

• Basic L2CAP Mode

• Flow Control Mode

• Retransmission Mode

• Enhanced Retransmission Mode

• Streaming Mode

• LE Credit-Based Flow Control Mode

For ACL-U logical links, the supported operation modes are the Basic L2CAP Mode,
Enhanced Retransmission Mode and Streaming Mode. For other features, the L2CAP
Signaling channel is the supported fixed channel, while the Frame Check Sequence (FCS)
is also a supported option.

2.1.2. SDP

The Service Discovery Protocol (SDP) provides a means for applications to discover
services offered by a peer Bluetooth device, as well as to determine the characteristics of
the available services. The SDP involves communication between an SDP server and an
SDP client. A server maintains a list of service records that describe the characteristics of
services associated with the server. A client can retrieve this information by issuing an SDP
request.

Both SDP client and server are implemented in the Host stack, and this module is only
used by profiles, such as A2DP and AVRCP, and does not provide APIs for user
applications at the moment.

2.1.3. GAP

The Generic Access Profile (GAP) provides a description of the modes and procedures in
device discoverability, connection and security.

Espressif ! /4210 2018.1

!

2. Classic Bluetooth

For the time being, only a limited number of GAP APIs are provided to the Classic
Bluetooth Host Stack. An application can make use of these APIs, as if they were a
"passive device" which could be discovered by and connected to peer Bluetooth devices.
However, APIs used for initiating the inquiry procedure are not currently provided to
customers (user applications).

As for the security aspect, the IO capability is hard-coded as "No Input, No Output”.
Therefore, only the "Just Works" association model in the Secure Simple Pairing is
supported. The storage of the link key is done automatically in the Host.

More GAP APIs for Classic Bluetooth are coming up next. Security APIs that are more
powerful and supportive of other association models will be provided in the near future.
APIs for device discovery and link policy settings will also be given at a later stage.

2.1.4. A2DP and AVRCP

The Advanced Audio Distribution Profile (A2DP) defines the protocols and procedures that
realize the distribution of high-quality audio content in mono or stereo on ACL channels.
A2DP handles audio streaming and is often used together with the Audio/Video Remote
Control Profile (AVRCP), which includes the audio/video control functions. Figure 2-2
depicts the structure and dependencies of the profiles[1]:

!
Figure 2-2. Profile Dependencies

As indicated in Figure 2-2, the A2DP is dependent upon the GAP, as well as the Generic
Audio/Video Distribution Profile (GAVDP), which defines procedures required to set up an
audio/video streaming.

📖 Note：

[1]: Advanced Audio Distribution Profile Specification, Revision 1.3.1.

Espressif ! /4211 2018.1

!

2. Classic Bluetooth

Two roles are defined in A2DP: Source (SRC) and Sink (SNK). SRC functions as a source of
a digital audio stream and SNK functions as a sink of a digital audio stream delivered from
the SRC.

Two roles defined in AVRCP are Controller (CT) and Target (TG). CT is a device that initiates
a transaction by sending a command frame to a target. Examples of CT include personal
computers, PDAs and mobile phones. TG is a device that receives a command frame and
accordingly generates a response frame. Audio players or headphones are examples of
TG. For the time being, A2DP (SRC) and AVRCP (CT) are supported and the device can
work as a loudspeaker which can also send remote control messages to the audio source.

In the current A2DP solution, the only audio codec supported is SBC, which is mandated in
the A2DP specification. A2DP Version 1.2 and AVDTP Version 1.2 are implemented.

Audio/Video Distribution Transport Protocol (AVDTP) defines the binary transactions
between Bluetooth devices for a streaming set-up, and media streaming for audio and
video using L2CAP. As the basic transport protocol for A2DP, AVDTP is built upon the
L2CAP layer and consists of a signaling entity for negotiating streaming parameters and a
transport entity that handles the streaming itself.

The basic service of AVDTP transport capabilities is mandated by the A2DP specification.
According to the configuration of current service capabilities, Media Transport and Media
Codec in the basic service capability are provided.

AVRCP defines the requirements necessary for the support of the Audio/Video remote
control use case.

The commands used in AVRCP fall into three main categories. The first one is the AV/C
Digital Interface Command Set, which is applied only on certain occasions and is
transported with the Audio/Video Control Transport Protocol (AVCTP). Browsing
commands are included in the second category, which provides browsing functionality over
another transport channel called the AVCTP browsing channel. The third category, Cover
Art Commands, is used to transmit images associated with media items, and is provided
through the protocol defined in the Bluetooth Basic Imaging Profile (BIP) with the OBEX
protocol.

Two sets of AV/C commands are used in AVRCP. The first one includes the PASS
THROUGH command, UNIT INFO command and SUBUNIT INFO command, which are
defined in the AV/C specification. The second set includes AVRCP-specific AV/C
commands which are defined as a Bluetooth SIG Vendor-Dependent extension. AV/C
commands are sent over the AVCTP control channel. A PASS THROUGH command is
used to transfer a user operation via a button from the Controller to the panel subunit,
which provides a simple and common mechanism to control the target. For example, the
operation IDs in PASS THROUGH include common instructions such as Play, Pause, Stop,
Volume Up and Volume down.

AVRCP arranges the A/V functions in four categories to ensure interoperability:

• Player/Recorder

• Monitor/Amplifier

Espressif ! /4212 2018.1

!

2. Classic Bluetooth

• Tuner

• Menu

In the current implementation, AVRCP Version 1.3 and AVCTP Version 1.4 are provided.
The default configuration for AVRCP-supported features is Category 2: Monitor/Amplifier.
Also, APIs for sending PASS THROUGH commands are provided.

A2DP and AVRCP are often used together. In the current solution, the lower Host stack
implements AVDTP and the AVCTP logic, while providing interfaces for A2DP and AVRCP
independently. In the upper layer of the stack, however, the two profiles combined make up
the "AV" module. The BTA layer, for example, provides a unified "AV" interface, and in BTC
layer there is a state machine that handles the events for both profiles. The APIs, however,
are provided separately for A2DP and AVRCP.  

Espressif ! /4213 2018.1

!

3. Bluetooth Low Energy

3. Bluetooth Low Energy
This chapter describes the architecture of the Bluetooth Low Energy in ESP32.

3.1. GAP
3.1.1. Overview

This section mainly introduces the implementation and use of the BLE GAP APIs in ESP32.
The GAP (the Generic Access Profile) defines the discovery process, device management
and the establishment of device connection between BLE devices.

The BLE GAP is implemented in the form of API calls and Event returns. The processing
result of API calls in the protocol stack is returned by Events. When a peer device initiates a
request, the status of that peer device is also returned by an Event.

There are four GAP roles defined for a BLE device:
• Broadcaster: A broadcaster is a device that sends advertising packets, so it can be

discovered by the observers.This device can only advertise, but cannot be
connected.

• Observer: An observer is a device that scans for broadcasters and reports this
information to an application. This device can only send scan requests, but cannot be
connected.

• Peripheral: A peripheral is a device that advertises by using connectable advertising
packets and becomes a slave once it gets connected.

• Central: A central is a device that initiates connections to peripherals and becomes a
master once a physical link is established.

Espressif ! /3114 2018.1

!

3. Bluetooth Low Energy

3.1.2. Status Transitions among GAP Roles

!

Figure 3-1.The status transitions among GAP roles

Advertising

Connection

Initiating

Scanning

Standby

Espressif ! /3115 2018.1

!

3. Bluetooth Low Energy

3.1.3. BLE Broadcast Procedure

3.1.3.1. Broadcast using a public address
When a public address is used for broadcasting, the own_addr_type of
esp_ble_adv_params_t must be set to BLE_ADDR_TYPE_PUBLIC. The broadcast flowchart is
as follows:

!
Figure 3-2.Broadcast using a public address  

Advertiser Scanner

API APIAPILLM APIAPILLM APIAPIAPI

calls
esp_ble_gap_set_device_name

calls
esp_ble_gap_set_device_name

returns
esp_gap_ble_adv_data_set_co

mplete_evt

calls
esp_ble_gap_start_advertising

to start broadcast;
sets the own_addr_type

parameter to
ble_addr_type_public

returns
esp_gap_ble_adv_start_comple

te_evt

sends config adv data HCI
command to LL layer

returns set adv data event

sends start adv HCI command
to LL layer

returns start adv event

advertising event

advertising event

esp_gap_ble_scan_result_evt

calls
esp_ble_gap_config_adv_data

Espressif ! /3116 2018.1

!

3. Bluetooth Low Energy

3.1.3.2. Broadcast using a resolvable address
When a resolvable address is used for broadcasting, the underlying protocol stack updates
the broadcast address every 15 minutes, and the own_addr_type of esp_ble_adv_params_t
must be set to BLE_ADDR_TYPE_RANDOM. The broadcast flowchart is as follows:

!
Figure 3-3.Broadcast using a resolvable address

Advertiser Scanner

API APIAPILLM APIAPILLM APIAPIAPI

calls
esp_ble_gap_set_device_name

calls
esp_ble_gap_config_local_privacy

returns
esp_gap_ble_adv_data_set_co

mplete_evt

calls
esp_ble_gap_start_advertising

to start broadcast;
sets the own_addr_type

parameter to
ble_addr_type_random

returns
esp_gap_ble_adv_start_comple

te_evt

sends config adv data HCI
command to LL layer

returns set adv data event

sends start adv HCI command
to LL layer

returns start adv event

advertising event

advertising event

esp_gap_ble_scan_result_evt

calls
esp_ble_gap_config_adv_data

⚠ Note:

When a resolvable address is used for broadcasting, the broadcast only starts after the
esp_ble_gap_config_local_privacy event is returned, and the own_addr_type type, a broadcast
parameter, must be set to BLE_ADDR_TYPE_RANDOM.

Espressif ! /3117 2018.1

!

3. Bluetooth Low Energy

3.1.3.3. Broadcast using a static random address
When a static random address is used for broadcasting, the own_addr_type of the

esp_ble_adv_params_t must be set to BLE_ADDR_TYPE_RANDOM, which is similar to the case
of broadcasting using a resolvable address. The broadcast flowchart is as follows:

!
Figure 3-4. Broadcast using a static random address

Advertiser Scanner

API APIAPILLM APIAPILLM APIAPIAPI

calls
esp_ble_gap_set_device_name

calls
esp_ble_gap_set_rand_addr

returns
esp_gap_ble_set_static_rand_a

ddr_evt

calls
esp_ble_gap_config_adv_data

calls
esp_gap_ble_adv_data_set_co

mplete_evt

calls
esp_ble_gap_start_advertising

to start broadcast;
sets the own_addr_type

parameter to
ble_addr_type_random

returns
esp_gap_ble_adv_start_comple

te_evt

sends set rand address HCI
command to LL layer

returns set rand address event

sends config adv data HCI
command to LL layer

returns set adv data event

sends start adv HCI command
to LL layer

returns start adv event

advertising event

advertising event

esp_gap_ble_scan_result_evt

Espressif ! /3118 2018.1

!

3. Bluetooth Low Energy

3.1.4. BLE Modes

Five modes are defined for the BLE broadcasts: Connectable Scannable Undirected mode,
High Duty Cycle Directed mode, Scannable Undirected mode, Non-connectable
Undirected mode, and Connectable Low Duty Cycle Directed mode.

3.1.4.1. Connectable Scannable Undirected Mode

A device in the Connectable Scannable Undirected mode can be discovered by and
connected to any device. Scannability indicates that the local device needs to reply with a
scan response, when a peer device sends a scan request.

As shown in the table above, a Connectable Scannable Undirected broadcast packet
includes 6 bytes of the broadcast address and 0 ~ 31 bytes of the broadcast packet data.
When a static random address is used for broadcasting, the broadcast address is specified
by calling esp_ble_gap_set_rand_addr. When a public address or a resolvable address is
used for broadcasting, the broadcast address is generated automatically by the protocol
stack.

3.1.4.2. High Duty Cycle Directed Mode and Connectable Low Duty Cycle Directed Mode

The IP directed broadcasts can only be discovered by and connected to the designated
devices.

As shown in the table above, the High Duty Cycle Directed Broadcast packet includes 6
bytes of the broadcasting device’s address and 6 bytes of the receiving device’s address. In
this mode, the broadcast parameters adv_int_min and adv_int_max are ignored.

In the Connectable Low Duty Cycle Directed mode, the broadcast parameters adv_int_min
and adv_int_max must be greater than 100 ms (0xA0).

3.1.4.3. Scannable Undirected Mode
In the Scannable Undirected mode, a device can be discovered by any other device, but it
cannot get connected to it.

Table 3-1.Packet structure

Payload

AdvA (6 octets) AdvData (0~31 octets)

Table 3-2.Packet structure

Payload

AdvA (6 octets) InitA (6 octets)

📖 Note:

IP directed broadcasts do not carry Adv Data.

Espressif ! /3119 2018.1

!

3. Bluetooth Low Energy

As shown in the table above, a Scannable Undirected packet includes 6 bytes of a
broadcast address and 0~31 bytes of the broadcast packet data, which is the same
structure as in the Connectable Scannable Undirected packet. A device in this mode can
only be scanned by any device, but it cannot be connected to it.

3.1.4.4. Non-connectable Undirected Mode
In the Non-connectable Undirected mode, a device can be discovered by any device, but it
can neither be scanned by, nor connected to any other devices. An unscannable device is
one that will not reply with a scan response, when a peer device sends a scan request. A
disconnectable device is one that cannot be connected to any device.

As shown in the table above, a Non-connectable Undirected broadcast packet also
includes 6 bytes of broadcast address and 0~31 bytes of broadcast packet data. In this
mode, a device can be discovered but cannot be scanned nor be connected by other
devices.

3.1.5. BLE Broadcast Filtering Policy

In ESP32's BLE architecture, the broadcast filtering policy is implemented by setting the
adv_filter_policy enumeration type, which has the following four values:

• ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY

• ADV_FILTER_ALLOW_SCAN_WLST_CON_ANY

• ADV_FILTER_ALLOW_SCAN_ANY_CON_WLST

• ADV_FILTER_ALLOW_SCAN_WLST_CON_WLST

The four values correspond to 4 cases, respectively:

• Can be scanned and connected to any device (no white list)

• Handles all of the connection requests, and only the scan requests in the whitelist

• Handles all of the scan requests, and only the connection requests in the whitelist

• Handles the connection requests and scan requests in the whitelist

3.1.6. BLE Scanning Procedure

In ESP32, the scanning device sets the parameters of the scan mainly by calling
esp_ble_gap_set_scan_params, and then starts the scan by calling

Table 3-3.Packet structure

Payload

AdvA (6 octets) AdvData (0~31 octets)

Table 3-4.Packet structure

Payload

AdvA (6 octets) AdvData (0~31 octets)

Espressif ! /3120 2018.1

!

3. Bluetooth Low Energy

esp_ble_gap_start_scanning. The information of the scanned device will be returned by the
ESP_GAP_BLE_SCAN_RESULT_EVT event, or by the
ESP_GAP_SEARCH_INQ_CMPL_EVT event when the duration times out.

3.1.7. BLE GAP Implementation Mechanism

ESP32 calls the BLE GAP APIs, registers BLE GAP Callback and obtains the status of the
current device by the returned value of the Event.

3.2. GATT
3.2.1. ATT

The data inside the BLE architecture exists in the form of Attributes that consist of four
basic elements:

• Attribute Handle: an Attribute Handle can help us locate any Attribute, which is similar
to using an address to locate data in the memory. For example, the Handle of the first
attribute is 0x0001 and the second one is 0x0002, and so on, up to 0xFFFF.

• Attribute Type: Each data set exposes a certain type of information, such as
temperature, transmit power, battery level and so on. The type of the data that is
exposed is called attribute type. Given the different possible types of data that can be
exposed, a 16-bit or 128-bit number, also known as UUID, is used to identify the type
of the attribute. For example, UUID 0x2A09	is for Battery Level and UUID 0x2A6E	is
for Temperature.

• Attribute value: the attribute value is the key information of each attribute, while the
other three elements (handle, type and permission) are added so the attribute value
can be better understood. The length of the attribute value for different attribute types
can be fixed or variable. For example, the length of the attribute value in Battery Level
is only 1 byte, which is enough to cover all the possible values of a Battery Level
attribute, i.e. 0-100, while the attribute length of a BLE-enabled pass-through module
is variable.

• Attribute Permission: Each attribute contains information that can only be read or
written. To facilitate these restrictions upon access, each and every attribute has its
own attribute permissions. The party that owns the data can control the read/write
access of its local data through the attribute permissions.

⚠ Notice:

When the value of the duration is 0, the device will be scanned permanently without timeout.

Table 3-5. Attribute Structure Table

Attribute Handle Attribute Type Attribute Value Attribute Permission

0x0001 - - -

0x0002 - - -

Espressif ! /3121 2018.1

!

3. Bluetooth Low Energy

The device that holds the data (i.e. the attributes) is defined as a server, and the device that
obtains the data from the server is defined as a client. The common operations between a
server and a client are listed below:

• A client sends data to a server by writing data into the server. Both the Write
Request and Write Command can be used to write an attribute value. However, a
Write Response is only prompted when a Write Request is used.

• A server sends data to a client by sending an Indication or Notification to the
client. The only difference between an Indication and a Notification is that a
Confirmation is prompted only when an Indication is used. This is similar to the
difference between a Write Request and a Write Command.

• A client can also obtain data from the server by initiating a Read Request.

�
Figure 3-5. Common operations between a server and a client

The common operations between a server and a client are achieved by using ATT PDU.
Each device can specify its supported MTU, which is the maximum length of an ATT
message. In ESP32 IDF, the MTU can be 23 - 517 bytes, and the total length of an attribute
value is not limited.

……… - - -

0xFFFE - - -

0xFFFF - - -

Attribute Handle Attribute Type Attribute Value Attribute Permission

⚠ Notice:

For detailed information regarding the common operations between a server and a client, please refer to
Core_V5.0, Vol3. Part F, Chapter 3.4 “Attribute Protocol PDUs”.

Espressif ! /3122 2018.1

!

3. Bluetooth Low Energy

If the length of the user’s packet is greater than (MTU-3), a Prepare Write Request is
required to write data. Similarly, if the length of the packet is greater than (MTU-1), a Read
Blob Request is required to read the remaining data.

3.2.2. GATT Profile

The ATT specifies the minimum data storage unit in the BLE architecture, while the GATT
defines how to represent a data set using attribute values and descriptors, how to
aggregate similar data into a service, and how to find out what services and data a peer
device owns.

The GATT introduces the concept of Characteristics, which are about information that is
not purely numerical, as in the cases outlined below:

• The unit of a given value, for example, weight measured in kilograms (kg),
temperature measured in Celsius (℃), and so on.

• The name of a given value. For example, for characteristics with the same UUID, e.g.
temperature attribute, the name of the value informs the peer device that this value
indicates “the temperature in the master bedroom”, while the other one indicates “the
temperature in the living room”.

• The exponent of excessive data numbers, such as 230,000 and 460,000. Given that
the exponent is already specified as 10^4, transmitting only “23” and “46” is enough
to represent 230,000 and 460,000.

These are just a few examples of the many existing requirements for describing data
accurately in actual applications. In order to provide more nuanced information, a large
piece of data space should be reserved to store this additional information in each
characteristic. However, in many cases, most of the extra space reserved will not be used.
Such a design, then, will not comply with BLE's prerequisite to have as concise as possible
protocols. In cases like this, the GATT specification introduces the concept of descriptors
to outline this additional information. It must be noted that each piece of data and
descriptor do not have a one-to-one correspondence, that is, complex data can have
multiple descriptors, while simple data can have no descriptors at all.

A characteristic is composed of three basic elements:

• Characteristic Declaration: a declaration is the start of a characteristic, informing a
peer device that the content following the declaration is the characteristic value. All

⚠ *Notice:

The difference between the MTU and the LE Packet Length of a single physical packet should be
highlighted here. The MTU, which is about the Host ATT layer in this case, determines whether all the
“data to be sent” can fit into a single ATT Request and also whether a Prepare Write Request is required
to send the data. Meanwhile, the LE Packet Length, which is about the PHY layer, determines whether
the packet needs to be divided and transmitted in several packages. For example, if (MTU + 4) is greater
than the LE Packet Length, this ATT packet needs to be divided and transmitted in more than one
physical packets. On the contrary, if (MTU+4) is shorter than the LE Packet Length, only one physical
packet is required to send the whole ATT packet. The reason we add 4 bytes to the MTU is because a 4-
byte L2CAP header will be added during the transmission.

Espressif ! /3123 2018.1

!

3. Bluetooth Low Energy

the handles between two declarations compose a complete characteristic. The write
and read properties are also included in a declaration.

• Characteristic Value: a characteristic value is the main part of a characteristic, which
carries the most important information of a characteristic.

• Descriptor: Descriptors can further describe characteristics (e.g. providing
configuration information) and a characteristic can have multiple or no descriptors.

In BLE, the GAP groups similar functions together in the form of Services. For example, all
of the characteristics and behaviors related to the battery can be defined as a Battery
Service; all of the characteristics and behaviors related to the heart rate can be defined as a
Heart Rate Service; and all of the characteristics and behaviors related to the weight scale
can be defined as a Weight Scale Service.

A Service typically includes one or more characteristics and each characteristic includes
zero or many descriptors. Users can select the required services based on their own
application requirements, and form the final application.

A completed service definition table is shown below:

Table 3-6. The definition table of services

Attribute Handle Attribute Type

0x0001 Service 1

0x0002 Characteristic Declaration 1

0x0003 Characteristic Value 1

0x0004 Descriptor 1

0x0005 Characteristic Declaration 2

0x0006 Characteristic Value 2

0x0007 Descriptor 2

0x0008 Descriptor 3

0x0009 Service 2

……… ………

Espressif ! /3124 2018.1

!

3. Bluetooth Low Energy

3.2.3. Add Gatt Services in ESP32 IDF Environment

Users can add services and characteristics manually, through events, one by one in ESP32
IDF Release 1.0. All of the read-write operations will reach the application layer through
events and users can respond to them with packages. This approach is prone to errors by
users who are not familiar with the BLE protocol, especially when adding services in a large
GATT database. So adding services manually one by one is not recommended.

In this context, adding services and characteristics with an attribute table is introduced in
ESP32 IDF Release 2.0. Users can add new services and characteristics by simply entering
them in an attribute table and, then, calling esp_ble_gatts_create_attr_tab. Additionally,
a lower layer response is also supported in this case, meaning the lower layer is able to
respond to some requests and identify errors automatically, so the users can focus on
receiving and sending data.

In this way, users can port profiles to the ESP32 platform from other platforms easily,
without the need to implement the BLE specifications all over again.

The structure of an attribute table defines all of the parameters that require initialization to
describe an attribute through esp_gatts_attr_db_t:

⚠ *Notices:

For other definitions of services, characteristics and descriptors, please refer to:

• Chapter 3 “Service Interoperability Requirements”, Part G, Vol3., Core_V5.0;

• https://www.bluetooth.com/zh-cn/specifications/gatt

⚠ *Notice:

The interface and examples of adding services and characteristics manually are still reserved in ESP IDF.
For more information, please refer to the gatt_service example.

⚠ *Notice:

We recommend that users add services and characteristics through the attribute table, which is much
easier, less error-prone, and supports low-layer responses. For details, please refer to the
gatt_server_service_table examples.

Table 3-7. The structure parameters of ESP32 IDF

Parameter Description

uint8_t	attr_control

Defines some responses, such as the write_response, which are given
by the lower layer automatically or passed to the application layer, so that
users can respond manually. The ESP_GATT_AUTO_RSP	automatic
response mode is recommended.

uint16_t	uuid_length

Indicates that the length of UUID is 16 bits, 32 bits or 128 bits. Since the
attribute UUID is transmitted by pointers, the length of the UUID has to
be specified.

Espressif ! /3125 2018.1

https://www.bluetooth.com/zh-cn/specifications/gatt

!

3. Bluetooth Low Energy

3.2.4. Discover a Peer Device’s Services in ESP32 IDF (GATT Client)

The Discovering Service can help a GATT Client to discover a peer device’s services and
characteristics. The discovery procedure can be different for different devices. The
discovery procedure of ESP32 IDF is introduced here, along with an example of how to
discover a peer device’s GATT service.

• Firstly, discover all of the peer devices’ services information, including the service
UUID and the range of the attribute handle.

- GATT Service, UUID 0x1801, Handles 0x0001~0x0005

- GAP Service, UUID 0x1800, Handles 0x0014~0x001C

• Then, discover all of the peer devices’ characteristics within the handle range of a
GATT service (0x0001~0x0005).

- Find “Service Change Characteristic”, Handles 0x0002~0x0003

- 0x0002 represents the characteristic declaration

- 0x0002 represents the characteristic value

- So each characteristic has the attributes of at leasts two handles.

uint8_t	*uuid_p

Indicates the pointer of the UUID of the current attribute. Users can read
a certain length of the UUID value, based on the length information
specified in the uuid_lenght parameter.

uint16_t	perm

Indicates the write and read permissions of the current attribute. This
parameter is bitwise-operated. Each bit represents a specific write and
read permission. Operating a certain bit can change the write and read
permission of the corresponding attribute. For example, PERM_READ |
PERM_WRITE means an attribute that can be read and written.

uint16_t	max_length

Indicates the maximum length of the current attribute value. The protocol
stack allocates memory to the attribute, based on this parameter. If the
length of the attribute value that a peer device has written exceeds the
maximum length defined in this parameter, a write error is returned,
indicating that the error is due to the length of the write operation
exceeding the maximum length of the data.

uint16_t	length

Indicates the actual length of the current attribute. For example, in case
the maximum length of the attribute is 512 bits and a peer device wants
to write “0x1122” into this attribute, we will set the current length of the
attribute to 2. When a peer device, then, reads this attribute, we can
obtain the actual length of this attribute from the memory, sending only
the part with the actual values, instead of the whole 512 bits.

uint8_t		*value

Indicates the initialized values of the current attribute value. Since the
format of this parameter is a pointer, the actual length of this parameter
should be obtained first by the length parameter, in order to get the
correct value from the pointer.

Parameter Description

Espressif ! /3126 2018.1

!

3. Bluetooth Low Energy

• Given that the handles of a GATT Service lie in the range of 0x0001~0x0005,
0x0003, for example, should be followed by the corresponding descriptor. All
descriptors, then, should be sought from 0x0004 onwards.

- 0x0004 represents the descriptor of the Client Characteristic Configuration

- 0x0005 does not have any information at the moment, and could be a handle
reserved for this service.

• At this point, the discovery procedure of GATT Service is complete.

3.3. SMP
This chapter mainly introduces the implementation and use of the ESP32 BLE SMP
(Security Management Protocol).

3.3.1. Overview

The SMP-related APIs have been packaged in ESP32 BLE’s GAP module.

The SMP generates encryption keys and identity keys, defines a convenient protocol for
pairing and key distribution, and allows the other layers in the protocol stack to connect
and exchange data with other devices safely. A connection in the data link layer and certain
security standards are required in this process. The GAP SMP allows two devices
encrypting their connection in the data link layer by setting such security levels as those in
the SMP chapter of the Bluetooth Core Specification version. Before introducing the
implementation of the GAP SMP, we should clarify the following concepts:

• Pairing indicates that two devices have agreed to establish a connection with certain
security levels.

• Bonding indicates that at least one device has sent some kind of indication or
security information, which could be an LTK, CSRK or IRK, to another device for
future connections. If these two devices can bond with each other, the key
distribution occurs after the pairing, otherwise no bonding information will be
exchanged. Bonding is not a prerequisite for pairing. However, during pairing the two
devices exchange their characteristics to determine whether the peer device is open
for bonding. If neither of these two devices is open for bonding, no security
information of the peer devices should be stored.

• Authentication indicates the security of a link. However, a deauthentication link does
not necessarily mean this link is not secure at all. When the key for the link encryption
has the security attributes that have been confirmed by both devices, these two
devices are considered authenticated. When STK is used for the authentication, a
keyword is generated during the pairing. For devices with input/output and OOB
functions, all the keys generated and exchanged have the MITM attributes (PIN/larger
OOB keys are used, which enforces security). If Just Works is used, all the keys
generated and exchanged have the No MITM attributes.

• Authorization is defined as the assignment of permission to perform an operation
from the application layer. Some applications may require authorization, in which case

Espressif ! /3127 2018.1

!

3. Bluetooth Low Energy

the application must be granted permission before being used. If no permission is
given, the whole process will fail.

3.3.2. Safety Management Controller

3.3.2.1.BLE Encryption
The encryption of a BLE device can be achieved with two basic methods:

• When no bonding is established between two BLE devices, these devices are
encrypted through the pairing procedure, while bonding (or not bonding) is
determined according to the specific pairing information of these BLE devices.

• Two bonded devices: initiate the encryption through the bonding procedure. When
two devices have already bonded, encryption is initiated with one device resorting to
the original bonding process.

The way in which a master initiates an encryption request in Just Works mode can be seen
in the flow chart below:

!
Figure 3-6. The flow chart of encryption in Just Works mode 

API SMP

esp_ble_set_encryption

SMP API

smp_pair_req

smp_pair_rsp

Master Slave

esp_gap_ble_sec_req_evt

esp_ble_gap_security_rsp

Encrypt

esp_gap_ble_auth_cmpl_evt

esp_gap_ble_auth_cmpl_evt

Espressif ! /3128 2018.1

!

3. Bluetooth Low Energy

The way in which a master initiates an encryption request in Passkey Notify mode can be
seen in the flow chart below:

!
Figure 3-7. The flow chart of encryption in Passkey Notify mode 

API SMP

esp_ble_set_encryption

SMP API

smp_pair_req

smp_pair_rsp

Master Slave

esp_gap_ble_sec_req_evt

esp_ble_gap_security_rsp

Encrypt

esp_gap_ble_auth_cmpl_evtesp_gap_ble_auth_cmpl_evt

esp_gap_ble_passkey_notify_evt
displays the passkey to the user,
the peer device should enter this
key and sent it to the SMP stack

esp_ble_passkey_reply
sends the passkey to the

SMP stack which is
displayed in the peer device

Espressif ! /3129 2018.1

!

3. Bluetooth Low Energy

3.3.2.2.BLE Bonding
The bonding between two BLE devices is achieved by calling a GAP API. According to the
description in the Bluetooth Core Specification, the purpose of bonding is that two BLE
devices, which have been encrypted by SMP, are able to use the same keys to encrypt a
link when they reconnect with each other, thus simplifying the reconnection process. These
two BLE devices exchange encryption keys during their pairing, and store them for long-
term use. The bonding process can be seen in the flow chart below:

!
Figure 3-8. The flow chart of BLE bonding process

3.3.3. The Implementation of SMP

The BLE SMP calls encryption APIs in BLE GAP, registers the BLE GAP callbacks, and
obtains the current encryption status through the return values of events.

Master

API

esp_ble_set_encryption continues if bonding
is completed with the

peer device

SMP

llc_start_enc_cmd

LLC LLC

llc_ltk_req_evt

API

llc_ltk_req_reply_cmd

Encrypt

llc_enc_change_evt

esp_gap_ble_auth_cmpl_evt

esp_gap_ble_auth_cmpl_evt

llc_enc_change_evt

Slave

SMP

⚠ Notice:

The bonding process must be initiated by a master device during the connection.

Espressif ! /3130 2018.1

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without
notice.
THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT
OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.
All liability, including liability for infringement of any proprietary rights, relating to use of
information in this document is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.
The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is
a registered trademark of Bluetooth SIG.
All trade names, trademarks and registered trademarks mentioned in this document are
property of their respective owners, and are hereby acknowledged.
Copyright © 2018 Espressif Inc. All rights reserved.

Espressif IoT Team

www.espressif.com

�

http://www.espressif.com

	Bluetooth
	Overview
	Bluetooth Application Structure
	Selection of the HCI Interfaces
	Bluetooth Operating Environment
	Architecture
	Controller
	BLUEDROID
	Overall Architecture
	OS-related Adaptation
	Bluetooth Directory Introduction
	Classic Bluetooth
	Overview
	L2CAP
	SDP
	GAP
	A2DP and AVRCP
	Bluetooth Low Energy
	GAP
	Overview
	Status Transitions among GAP Roles
	BLE Broadcast Procedure
	Broadcast using a public address
	Broadcast using a resolvable address
	Broadcast using a static random address
	BLE Modes
	Connectable Scannable Undirected Mode
	High Duty Cycle Directed Mode and Connectable Low Duty Cycle Directed Mode
	Scannable Undirected Mode
	Non-connectable Undirected Mode
	BLE Broadcast Filtering Policy
	BLE Scanning Procedure
	BLE GAP Implementation Mechanism
	GATT
	ATT
	GATT Profile
	Add Gatt Services in ESP32 IDF Environment
	Discover a Peer Device’s Services in ESP32 IDF (GATT Client)
	SMP
	Overview
	Safety Management Controller
	BLE Encryption
	BLE Bonding
	The Implementation of SMP

