
VERSION 1.0

Reactive Microservices



@itrjwyss

Microservices are an architecture and an approach 
to building applications. Microservices are distributed 
and loosely coupled, small and autonomous services 
that work together, collections of small and isolated 

services each of which owns their data. 



@itrjwyss

Monoliths

• All-in-one, all-or-nothing


• Difficult to scale


• Difficult to understand


• Difficult to maintain



@itrjwyss@itrjwyss



@itrjwyss@itrjwyss



@itrjwyss@itrjwyss



@itrjwyss@itrjwyss



@itrjwyss@itrjwyss



@itrjwyss@itrjwyss



@itrjwyss

Microservices


Divide and Conquer



@itrjwyss

https://www.redhat.com/en/topics/microservices/what-are-microservices

https://www.redhat.com/en/topics/microservices/what-are-microservices


@itrjwyss

https://microservices.io/patterns/microservices.html

https://microservices.io/patterns/microservices.html


@itrjwyss

https://microservices.io/patterns/microservices.html

https://microservices.io/patterns/microservices.html


@itrjwyss@itrjwyss



@itrjwyss

Characteristics
• Small in size


• Messaging Enabled


• Bounded by contexts


• Autonomously developed


• Independently deployable


• Decentralized


• Built and released with automated processes



@itrjwyss

Microservices, Really?
• A huge developer team


• New team members must quickly become productive


• The application must be easy to understand and modify


• Devops, CI/CD


• Satisfy scalability and availability 


• Take advantage of emerging technologies



@itrjwyss

Challenges

• Building


• Testing


• Versioning


• Deployment

• Logging


• Monitoring


• Debugging


• Conectivity



Mercedes Wyss 

@itrjwyss

Community	Leader	
Devs+502	&	JDuchess	Chapter	Guatemala	

Ex-JUG	Member	
Guatemala	Java	Users	Group	(GuateJUG)	

Chief	Technology	Officer	(CTO)	at	Produactivity	
Full	Stack	Developer	

Auth0	Ambassador	&		
Oracle	Groundbreaker	Ambassador



@itrjwyss

Reactive Manifesto



@itrjwyss@itrjwyss

Responsive



@itrjwyss@itrjwyss

Resilient



@itrjwyss@itrjwyss

Elastic



@itrjwyss@itrjwyss

Message Driven



@itrjwyss

Reactive

• Reactive is a set of design principles


• Mean one of three things:


✓ Reactive Systems (architecture and design)


✓ Reactive Programming (declarative event-based)


✓ Functional Reactive Programming



@itrjwyss

Functional Reactive Programming

• Call FRP


• React to data streams using the functional paradigm


• Is not a utility or a library 



@itrjwyss

Reactive Programming

• Subset of asynchronous programming


• Discrete steps can be executed in an asynchronous and non-blocking


• Is event-driven


• Emphasis on the flow of data rather than the flow of control.


• Two styles (Callback-based, Declarative)



@itrjwyss

Benefits
• Increased utilization of computing resources on multicore and multi-CPU 

hardware.


• Increased performance by reducing serialization points as per Amdahl’s 
Law and, by extension, Günther’s Universal Scalability Law.


• Provide a simple and maintainable approach to dealing with asynchronous 
and non-blocking computation and I/O.


• Typically removes the need for explicit coordination between active 
components.



@itrjwyss

Event-driven vs. Message-driven

• Reactive Programming (computation through ephemeral data flow chains), 
event-driven


• Reactive Systems (resilience and elasticity through the communication 
and coordination), message-driven


• Messages are inherently directed, events are not.



@itrjwyss

A message is an item of data that is sent to a 
specific destination. An event is a signal emitted 

by a component upon reaching a given state.



@itrjwyss@itrjwyss



@itrjwyss@itrjwyss



@itrjwyss

Synchronous



@itrjwyss

Asynchronous



@itrjwyss



@itrjwyss



@itrjwyss

Reactive Systems

• Definition of the Reactive Manifesto.


• message-passing (concurrency, distribution, resilience and elasticity. Full 
isolation between components)


• Isolation is a prerequisite for resilience and elasticity.



@itrjwyss

About Resilience
• Patterns (Bulkheads and 

Circuit Breaker)


• Libraries (Netflix’s Hystrix, 
resilience4j)


• Remove failures from the call 
chain, freeing the client and 
handling on the server.



@itrjwyss

About Elasticity

• Responsiveness under load (resource efficient, cost-efficient, 
environment-friendly and pay-per-use).


• Need to be adaptive (auto-scaling, replication of state and behavior, load-
balancing, failover, and upgrades)



@itrjwyss

Produactivity on Reactive Systems
• Most productive systems architecture (multicore, cloud and mobile)


✓ Isolation (Resilience)


✓ Supervisor hierarchies 


✓ Message-passing and location transparency


✓ Replication (data loss, information storage and recovery)


✓ Elasticity (resources, operational costs, load) 



@itrjwyss@itrjwyss



@itrjwyss

Reactive Relate to Microservices

• Microservices is an Architecture


✓ Reactive programming: to implement the service-internal logic and 
dataflow management.


✓ Reactive Systems: between microservices.



@itrjwyss@itrjwyss

Monolith



@itrjwyss@itrjwyss

Microservices



@itrjwyss@itrjwyss

Reactive Microservices



@itrjwyss



@itrjwyss@itrjwyss



@itrjwyss@itrjwyss



@itrjwyss

Integration Core Principles

• Orchestration


• Transformation


• Transportation (HTTP, JMS, JDBC)


• Mediation (supporting multiple versions, multiple channels)


• Non-functional consistency



@itrjwyss@itrjwyss

Service Mesh



@itrjwyss@itrjwyss



@itrjwyss



@itrjwyss

Security

• Authentication and Authorization


• TLS Client Certificates


• HTTPS Basic Authentication


• Asymmetric Request Signing


• Hash Message Authentication Code (HMAC)



@itrjwyss

https://github.com/itrjwyss/ReactiveMicroservices

https://www.facebook.com/itrjwyss
@itrjwyss

https://github.com/itrjwyss/ReactiveMicroservices
https://www.facebook.com/itrjwyss

