

Trilha Computação Cognitiva

lago Elias e Alexandre Nakahara

Criando uma API de visão computacional para avaliar desempenho de plantações agrícolas com Oracle Cloud

Break New Ground

Break New Ground

Criando uma API de visão computacional para avaliar desempenho de plantações agrícolas com Oracle Cloud

Alexandre Nakahara, Oracle lago Elias, bitHarvest / Visio.ai

Julho, 2019

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any features or functionality described for Oracle's products may change and remains at the sole discretion of Oracle Corporation.

ORACLE®

TRANSFORMAR O MUNDO EMPODERANDO AS PESSOAS POR MEIO DA INOVAÇÃO

Technovation – 2017/2018/2019

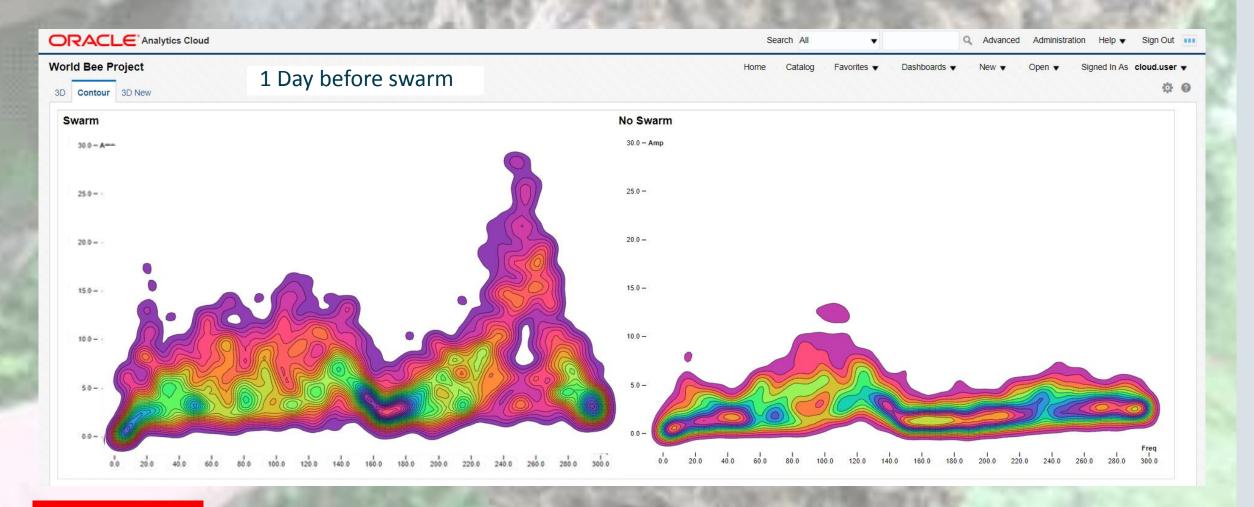
PROA Coins – Instituto PROA – 05/2018

Health AI Hackathon – School of AI 03/2019

Sancathon – Future Farms 04/2019

Maratona de Programação – Centro Paula Souza (ETEC) – 06/2019

Recrutamento GenO - 05/2019

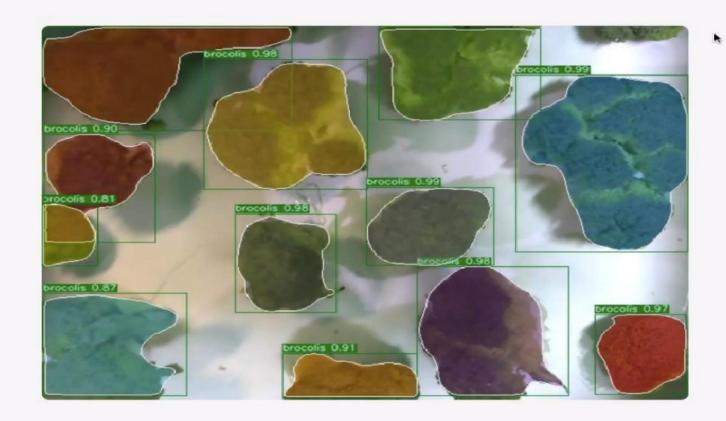


Analytics confirms low frequency "warble"

Quem somos?

BitHarvest

BitHarvest


Q Busca Avançada

Stream

Exportar Dados

Ver Gavetas

Configurações

API de Inferência?

API

(Interface de Programação de Aplicações)

REST API

NodeJS (Express, Hapi) Python (Django, Flask, Starlette+Uvicorn)

Onde utilizar

- Aplicações em tempo real
- Quando se tem embarcados no sistema
- Arquitetura de microsserviços

Onde (talvez) não utilizar

Aplicações cujo processamento pode ser atrasado

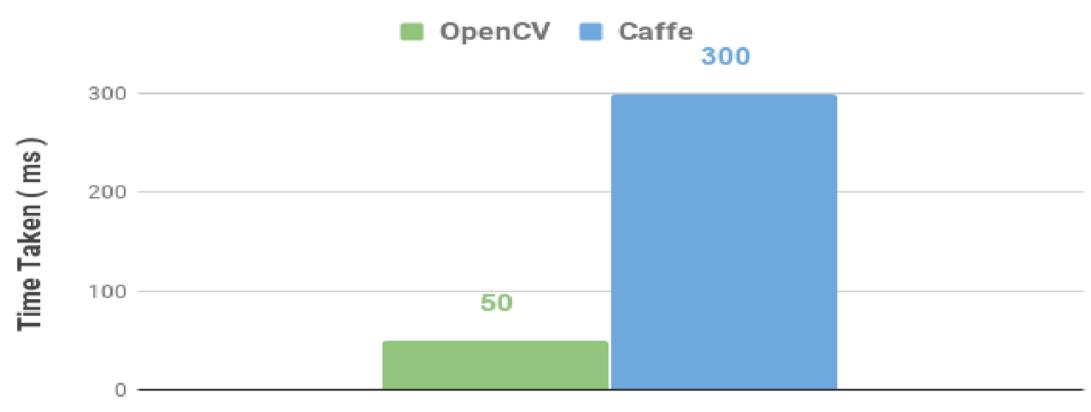
Inferência

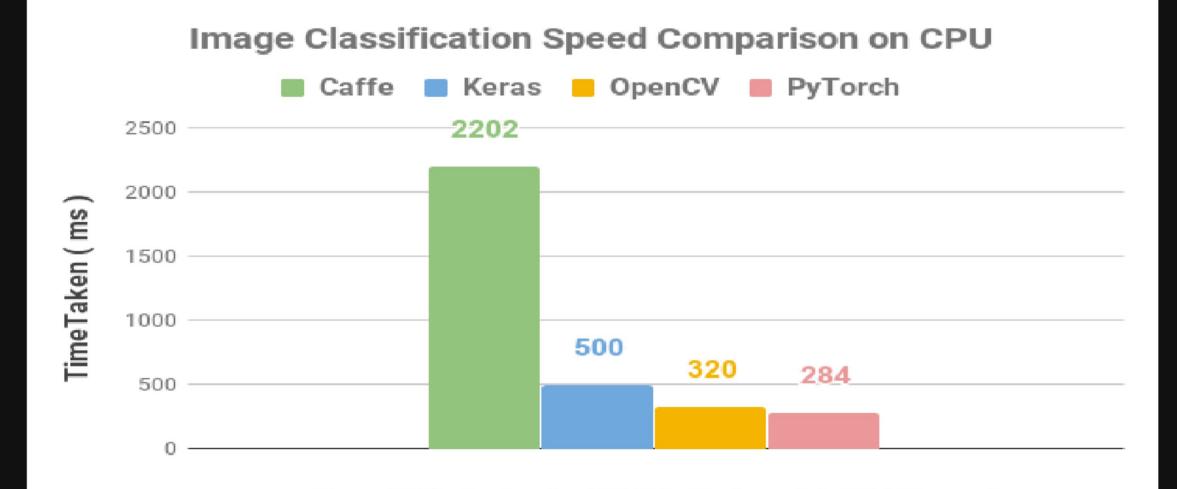
Soluções

theano

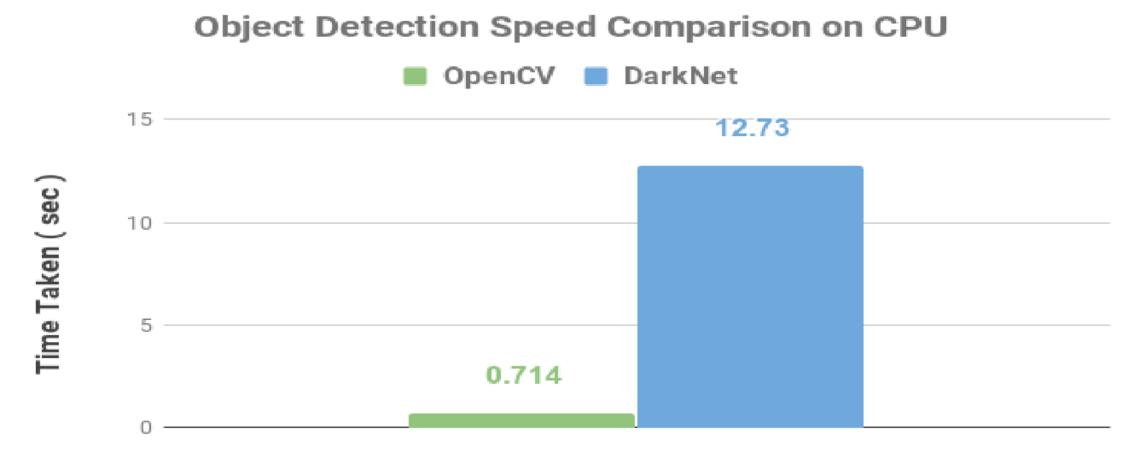
versus

Vantagens:

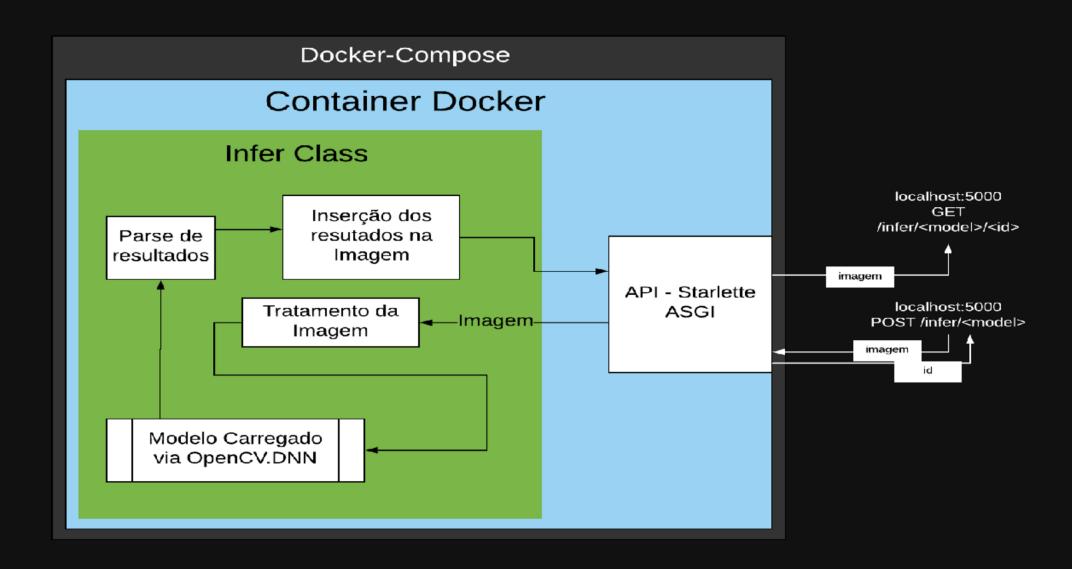

- Desempenho melhor (Hardware da Intel)
- Agnóstico de Framework e Hardware (FPGA, CPU, GPU, MOVIDIUS VPU)
- Atualizado com frequência
- OpenVINO


Desvantagens

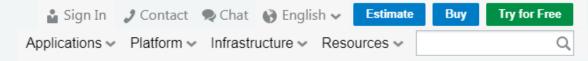
- GPU's da NVIDIA rodando em OpenCL
- Não efetua treinamento
- A aplicação de redes pré-treinadas demanda mais conhecimento



OpenCV is 6X Faster

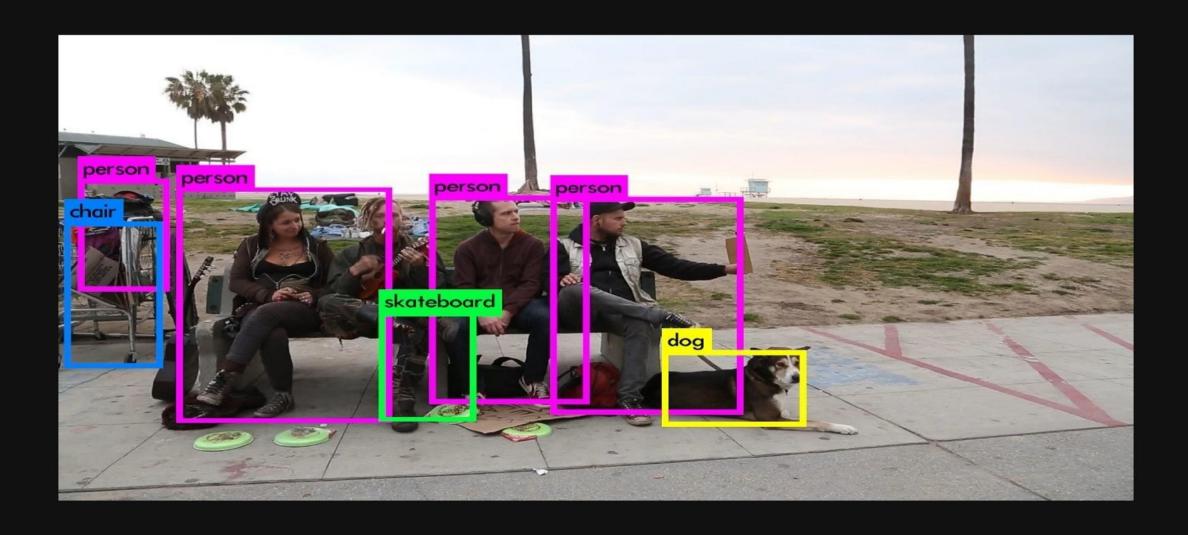

OpenCV is faster by 7X (Caffe) and 1.5X (Keras)

OpenCV is 18X Faster


Implementação

Arquitetura da API

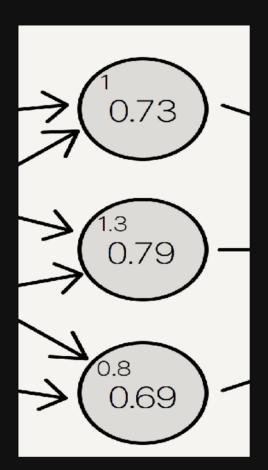
Compute - GPU Instances


Pricing calculator \rightarrow

Instance Type	Shape	Pay as You Go (GPU Per Hour)	Service Includes per Month
Pascal Virtual Machine GPU	VM.GPU2.1	R\$5.0746	 GPU: 1x P100 OCPU: 12 Memory: 72 GB Network: 8 Gbps Storage: Up to 1 PB of remote Block Volumes
Pascal Bare Metal GPU	BM.GPU2.2	R\$5.0746	R\$5 reais a hora • GPU: 2x P100 • OCPU: 28 • Memory: 192 GB • Network: 2 x 25 Gbps • Storage: Up to 1 PB of remote Block Volumes
Volta Virtual Machine GPU	VM.GPU3.1	R\$11.7413	 GPU: 1x V100 OCPU: 6 Memory: 90 GB Network: 4 Gbps

Classe de Detecção

YOLO


Carregar e Configurar

```
1 net = cv2.dnn.readNetFromDarknet(cfg, weights)
2 net.setPreferableBackend(cv2.dnn.DNN_BACKEND_DEFAULT)
3 net.setPreferableTarget(cv2.dnn.DNN_TARGET_OPENCL)
```

Configuração (cfg)

```
[convolutional]
 2 filters=64
   size=7
   [maxpool]
   size=2
   stride=2
   [convolutional]
11 filters=192
12
   . . .
13
14 [maxpool]
15 \text{ size}=2
16 stride=2
18 [convolutional]
19 filters=128
20 ...
```

Pesos

Capturar a Referência das Camadas de Output

```
1 ln = net.getLayerNames()
2 ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
```

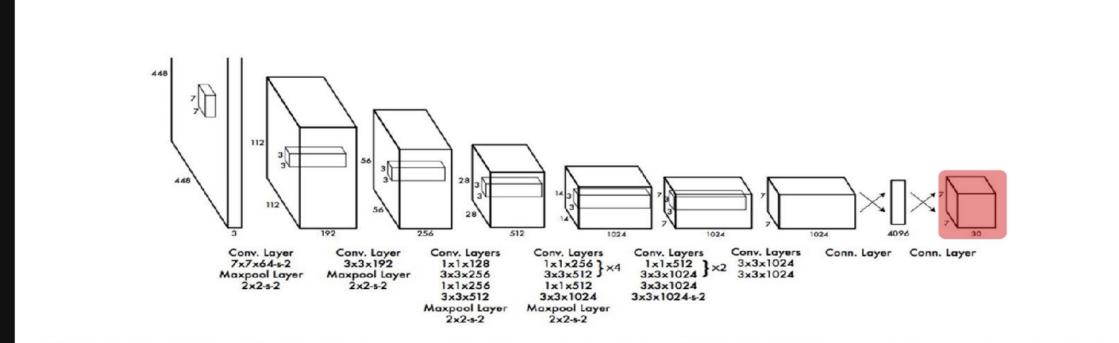
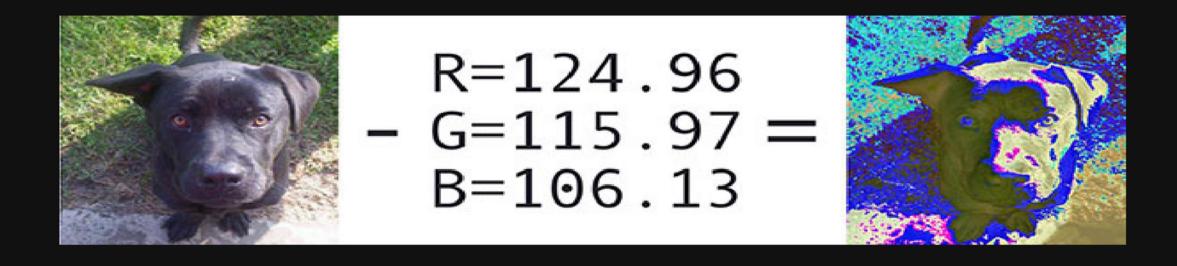



Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

Tratar a Imagem e gerar o output

Parse dos resultados:

detecção

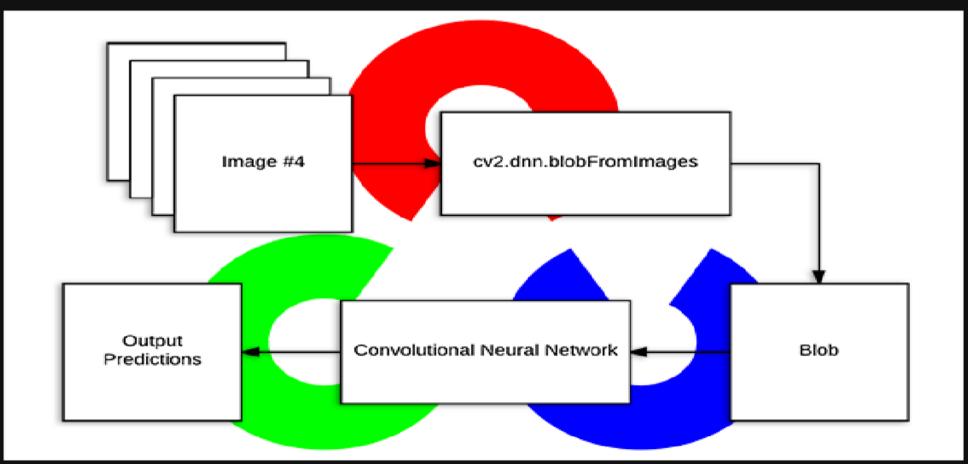
scores/classe

```
[[0.04615184 0.05549661 0.46020883 ... 0.
    [0.04845504 0.03119141 0.3057728 ... 0.
                                                                  0.
    [0.05163545 0.04100422 0.81520915 ... 0.
 4
    [0.95453477 0.95826906 0.42958248 ... 0.
    [0.9574697
                            0.29094929 ... 0.
                                                                  0.
                0.9671171
                                                       0.
    [0.963808
                0.9633634
                            0.86105084 ... 0.
                                                                            ]]
                                                       0.
   [[0.0196179
                0.02369402 0.04342464 ... 0.
    [0.01811114 0.01925643 0.39157847 ... 0.
                                                                  0 -
                                                       0 -
10
    [0.02052197 0.01649838 0.06510343 ... 0.
                                                                  0.
12
    [0.9750362 0.9769141
                            0.04074052 ... 0.
                                                       0.
                                                                  0.
13
    [0.9818321
                0.9775298 0.3982786 ... 0.
                                                       0.
                                                                  0.
14
    [0.98003006 0.9840621
                            0.07373534 ... 0.
                                                       0.
                                                                  0.
                                                                            11
   [[0.00570609 0.00743651 0.00960583 ... 0.
                                                       0.
                                                                  0.
16
    [0.00791775 0.01174264 0.01763124 ... 0.
                                                       0.
                                                                  0.
    [0.00960346 0.00898112 0.17557846 ... 0.
                                                                  0.
18
    . . .
19
    [0.98920095 0.9892078
                            0.01725708 ... 0.
                                                       0.
                                                                  0.
20
    [0.9899234 0.987255
                            0.01848863 ... 0.
                                                                  0.
                                                       0.
21
    [0.9878559
                0.99048084 0.15287374 ... 0.
                                                                  0.
                                                                            11
```

Parse dos resultados:

indice 0 = classe pessoa


```
[4.6151835e-02\ 5.5496614e-02\ 4.6020883e-01\ 1.2107838e-01\ 3.5152695e-07
    0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
    0.0000000e+00 0.0000000e+00 0.0000000e+00
                                               0.0000000e+00
                                                             0.0000000e+00
    0.0000000e+00 0.0000000e+00 0.0000000e+00
                                               0.0000000e+00
                                                             0.0000000e+00
    0.0000000e+00 0.0000000e+00 0.0000000e+00
                                               0.0000000e+00
                                                             0.0000000e+00
    0.0000000e+00 0.0000000e+00 0.0000000e+00
                                               0.0000000e+00
                                                             0.0000000e+00
 6
    0.0000000e+00 0.0000000e+00 0.0000000e+00
                                               0.0000000e+00
                                                             0.0000000e+00
    0.0000000e+00 0.0000000e+00 0.0000000e+00
                                              0.0000000e+00 0.0000000e+00
    0.0000000e+00 0.0000000e+00 0.0000000e+00
                                              0.0000000e+00
                                                             0.0000000e+00
    0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
                                                             0.0000000e+00
10
    0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
11
12
    0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
13
    0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
14
    0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
15
    0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
                                                             0.0000000e+00
16
    0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
    0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.000000e+00]
17
```


scores/classe

Parse dos resultados:

```
for out in outs:

for detection in out:
    scores = detection[5:]
    max_score = np.argmax(scores)
    score = scores[max_score]
    if score >= threshold:
        centerx, centery, width, height = tuple(int(val*multiplier) for
        x, y = int(centerx - width/2), int(centery - height/2)
        objects.append(((x,y),(x+width, y+height), names[max_score]))
```

Processo

https://www.pyimagesearch.com/2017/11/06/deep-learning-opencvs-blobfromimage-works/

API

POST

```
@api.route('/infer/{key}', methods=['POST'])
   async def inf(request):
 2
 3
       key = request.path params['key']
 4
       payload = await request.body()
 5
 6
       imaqe
              = loaded models[key].decode(payload)
 7
       bboxes = loaded models[key].detect(image)
 8
       print (bboxes, file=sys.stderr)
 9
       image
               = loaded models[key].insert bboxes(image, bboxes)
10
       # res
                 = loaded models[key].encode image(image)
11
       unique filename = str(uuid.uuid4())
12
       cv2.imwrite(f'files/{unique filename}.jpg', image)
13
       return Response(f'{unique filename}', status code=200)
14
```


GET

```
1 @api.route('/file/{id}', methods=['GET'])
2 async def get_image(request):
3     key = request.path_params['id']
4     return FileResponse(f'files/{key}.jpg', status_code=200)
```

Demonstração bit.do/tdc_api

Repositório Github: dinthea/infer_service

Testes no Jupyter bit.do/jupyter_tdc

Contato

iagoelifa@gmail.com iago@visio.ai

Agenda

ORACLE°

TDC

Autonomous Database para Dev

Não se preocupe mais com a infraestrutura que sustenta seu banco de dados, e sem downtime!

9h30 11h30 13h30 15h30 17h30

K8s em Oracle Cloud

Use Kubernetes e Docker em um ambiente de alta disponibilidade na nuvem!

10h30 12h30 14h30 16h30

Vagas limitadas a 6 participantes por ordem de chegada Solicite um ambiente de trial antes de participar do evento

Solicite um ambiente de trial antes de participar de nossos laboratórios práticos!

http://oracle.com/goto/tdcsp

Break New Ground

